狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线

代做LCOMP3121、代寫c/c++,Java語言編程

時間:2024-06-21  來源:  作者: 我要糾錯



M LCOMP3121/9101
Algorithm Design and Analysis
J K
Tutorial 2
Divide and Conquer
Announcements
 Attached at the end of the tutorial sheet is an appendix with further information
about recurrences. If you are struggling with understanding recurrences, you may
wish to refer to the appendix.
COMP3121/9101: Algorithm Design and Analysis 2024, Term 2
1 This Week, in summary...
 The divide and conquer paradigm breaks a problem down into multiple subproblems and then com-
bines solutions to these subproblems to solve the original problem. We need to specify three steps.
– Divide. Splits the current problem instance into (two or more) problems of strictly smaller size.
– Conquer. Recursively splits the problem instances until the splitting stage can no longer be
performed. Once we reach the base cases, we can solve those individually.
– Combine. Uses solutions to smaller subproblems and merges them to obtain the solution to
the current problem instance.
See section 4 for a more detailed description of the process.
 The Master Theorem is a general framework for computing the asymptotic solution of a recurrence.
Let T (n) = aT (n/b) + f(n), where a ≥ 1 and b > 1. The theorem says that:
– if there exist a constant ? > 0 such that f(n) = O (nlogb a??), then T (n) = Θ (nlogb a).
– if f(n) = Θ (nlogb a), then T (n) = Θ (nlogb a log n).
– if there exist a constant ? > 0 such that f(n) = ? (nlogb a+?) and if af(n/b) ≤ cf(n) for some
constant c < 1 for all sufficiently large n, then T (n) = Θ (f(n)).
– if the recurrence does not fit into any of the above cases, then the theorem cannot be applied
and other techniques must be used.
Lecture Problems, Key Takeaways
 Maximum Median.
– If target t is achievable, then smaller targets are also achievable; if target t is not achievable, then
larger targets are also not achievable. Therefore, the problem of deciding is target t achievable?
is monotonic.
– Binary search for t between interval [A[n], A[n] + k].
– Time complexity. Deciding if target t is achievable takes O(n) time; binary search over a space
of length k; therefore, overall time complexity is O(n log k).
 Merge Sort.
– Divide. Splits the array into two halves.
– Conquer. Sort each half recursively.
– Combine. Merge two halves together in O(n) time.
– Time complexity. Recurrence is given by T (n) = 2T (n/2)+O(n), which is T (n) = O(n log n).
 Counting inversions.
– Divide. Splits the array into two halves.
– Conquer. Computes the number of inversions in each half recursively.
– Combine. Count the number of inversions that cross the dividing line in O(n) time.
– Time complexity. Recurrence is given by T (n) = 2T (n/2)+O(n), which is T (n) = O(n log n).
? Quick Sort.
– Divide. Choose pivot and partition array around it in O(n) time.
– Conquer. Sort both sides of the pivot recursively.
1
COMP3121/9101: Algorithm Design and Analysis 2024, Term 2
– Combine. Pass answer up the recursion tree.
– Time complexity. T (n) = O(n log n) in the average case; T (n) = O(n2) in the worst case,
depending on pivot choice.
 Karatsuba. Split the two input integers into
A = A1 · 2n/2 +A0, B = B1 · 2n/2 +B0.
We now compute AB with the expression
AB = A1B1 · 2n + [(A1 +A0)(B1 +B0)?A1B1 ?A0B0] 2n/2 +A0B0.
– Time complexity. Recurrence is given by T (n) = 3T (n/2) + c · n, which is T (n) = Θ (nlog2 3).
2
COMP3121/9101: Algorithm Design and Analysis 2024, Term 2
2 Binary Search
When we wanted to decide if an element x exists in an array A, we required n queries in the worst-case!
If we know further information about the properties of our input, we can make further improvements to
reduce the running time or memory usage. Binary search is an optimisation technique that reduces the
number of queries from n down to ?log2 n?. However, for binary search to be effective, we require two
properties to hold.
 Well-defined interval. If we want to query the middle element, we need a well-defined interval to begin
with so that the middle element is defined.
 Monotonicity. If we remove a set of elements, we should ensure that we never have to query any of the
elements that we previously tossed out.
A monotonic array looks like a sorted or reverse sorted array. For example, consider the array A =
. If we want to check if A consists of the element 2, then we can first query 0. Since A
is sorted (monotonic), we know that any element to the left of 0 will never be larger than 0 and so, we can
safely remove all such elements to the left. This drastically improves the running time of our first algorithm
where we check all of the elements of the array, especially when the number of elements becomes large!
In the following problems, be sure to check that the two above properties hold before simply applying
binary search!
2.1 Identity Element
Let A[1..n] be a sorted array of n distinct integers. Some of these integers may be positive, negative,
or zero. Design an O(log n) algorithm to decide if there exist some index i such that A[i] = i.
Hint. Consider constructing a new array B such that B[i] = A[i]? i.
Exercise. Further, suppose we now know that A[1] > 0. Answer the same problem in O(1) time.
2.2 Search in Rotated Sorted Array (#33)
Let A[1..n] be an array of n integers. We are given an additional integer x, and our goal is to decide
whether x appears somewhere in A.
(a) Without any additional information aboutA, design a linear-time algorithm that decides whether
x appears somewhere in A.
(b) Now, suppose you know that A is a sorted array. Design an O(log n) algorithm that decides
whether x appears somewhere in A.
(c) Now, suppose you know that A is a sorted array but it has been shifted by k units to the right.
For example, if k = 4 and the sorted array was [1, 2, 3, 5, 6, 7], then A = [5, 6, 7, 1, 2, 3]. In this
scenario, suppose we are given k in advance. Design anO(log n) algorithm that decides whether
x appears somewhere in A.
Note. You are given, as input, an array that is promised to be shifted by k units to the right, where
k is known.
(d) Finally, suppose that we do not know what k is. Design an O(log n) algorithm that decides
whether x appears somewhere in A.
Hint. If we can find k in O(log n) time, then we can just use the previous algorithm.
3
COMP3121/9101: Algorithm Design and Analysis 2024, Term 2
2.3 Order Statistic of Two Sorted Arrays
Let A[1..n] and B[1..n] be two sorted arrays. For simplicity, assume that A and B share no common
elements and all elements in each array are distinct. We construct a new array C[1..2n] by merging
A and B together.
Given an integer k, where 1 ≤ k ≤ 2n, we want to design an algorithm to find the kth smallest
element in C.
(a) Design an O(n log n) algorithm that finds the kth smallest element in C.
Hint. This is really easy...
(b) Design an O(k) algorithm that finds the kth smallest element in C.
(c) Design an O(log n) algorithm that finds the kth smallest element in C.
Hint. How does this problem relate to median finding? Do we obtain further information by
comparing an element of A with an element of B?
4
COMP3121/9101: Algorithm Design and Analysis 2024, Term 2
3 Applications of Binary Search
3.1 Unbounded Binary Search
To directly apply binary search, we needed a well-defined interval. However, what happens when we are
not given the interval directly? We will need to artificially construct the interval.
Let A be a sorted array of distinct elements. However, you are not given the size of A. Your task is to
find the smallest index i so that A[i] > 0, or report that no such index exists. Of course, we can just
check each element one by one. Aim to design a more efficient algorithm.
Hint. Try to artificially construct an interval to binary search over.
3.2 Discrete Binary Search
Binary search works well when the array we want to binary search over is monotonic. Discrete binary
search directly toys with this idea. Instead of an array of integers where the monotonicity is clear, we can
additionally construct a boolean array.
 What does monotonicity mean here?
Definitions.
 Subsequence. A subsequence of a string S is a string T that can be formed by deleting some
or no characters from S without changing the relative order of the remaining elements. For
example, if S = Comp3121AndComp9101, then we can form the subsequence T = 3121n9101.
 Substring. A substring of a string S is a contiguous string T that forms a subsequence of S.
 Supersequence. A supersequence of a string T is a string S that contains T as a subsequence
of S.
 Superstring. A superstring of a string T is a string S that contains T as a substring of S.
You are given a string S of n characters and another string T of m characters such that m ≤ n. You
want to find the length of the longest subsequence of S that appears as a prefix of T . For example, if
S = abcdefgh and T = bcdghf, then your algorithm should return 5.
(a) Let T ′ be a prefix of T . Show that:
 If T ′ is a subsequence of S, then any substring of T ′ is also a subsequence of S.
 If T ′ is not a subsequence of S, then any superstring of T ′ is not a subsequence of S.
(b) For a given string A of n characters and another string B ofm characters (withm ≤ n), assume
that there is an O(f(n)) algorithm that decides if B is a subsequence of A. Using this algorithm,
describe an O(f(n) logm)-time algorithm to compute the length of the longest subsequence of
S that appears as a prefix of T .
5
COMP3121/9101: Algorithm Design and Analysis 2024, Term 2
4 Solving problems with Divide and Conquer
4.1 Designing the algorithm
To solve a problem with divide and conquer, we need to describe two steps in our algorithm: how we
divide our problem instance into multiple (usually two or more) subproblems, and how we combine the
solutions to the subproblems to solve the original problem. However, the process by which we do this
comes in three steps.
4.1.1 Dividing the instance
The first step is to find a suitable method of dividing the problem instance. We need to ensure that the
subproblems constructed are of the same type; after all, we will be calling the magical recursion wizard to
do the work for us. But for the wizard to do its work, we need to ensure that the problem instance mirrors
the original problem we wanted to solve (see the tiling problem).
There are usually many ways of appropriate dividing the problem instance; however, the intended division
lends itself nicely to a clean combine step (see merge sort).
4.1.2 Conquering each subproblem
We can loosely describe the conquer step as follows:
 If the current problem instance is easy, we solve it directly ourselves.
 Otherwise, we simplify the problem instance by transforming it into (usually two or more) smaller
instances of the same problem.
If the self-referential description is confusing, we can imagine asking a recursion wizard to solve our
smaller problem instances. However, there is one catch here:
 If you ask the wizard to solve the current problem, it will be able to solve all subproblem instances
that are strictly smaller.
 The wizard can only solve the problem when the input is in the appropriate format.
 The wizard will send you the solution to all subproblems and will ask you to use those solutions to
solve the original problem.
4.1.3 Combining solutions
Once we have solutions to the smaller subproblems from the recursion wizard, we need a way to merge
them together to answer the original problem. The combine step may be as simple as taking the maxi-
mum/minimum of either two sides, or as complicated as requiring extra work to consider elements from
either side of the partition.
 Example. Merge sort requires us to merge the two sorted arrays together to form a new sorted array;
this is done with two pointers initially at the head of the arrays and then sweeping left to right.
 Example. Counting inversions requires us to count inversions between pairs of elements that are on
both halves of the split (i.e. one element from the pair is on one half and the other element is on the
other half).
 Example. Computing the pair of points that are closest in distance requires us to consider pairs of
points that are on both halves of the split.
6
COMP3121/9101: Algorithm Design and Analysis 2024, Term 2
4.2 Analysing the algorithm
4.2.1 Proving correctness
When proving the correctness of divide-and-conquer algorithms, we typically prove it by induction. There-
fore, we follow the induction structure:
 The base cases are typically easy to argue because, by the nature of how you have handled the base
cases, the problem is solved.
 Assume, now, that the problem has been solved for each of the recursive steps. We now need to
argue that if our algorithm retrieves the correct solution in our recursive stages, then it also retrieves
the correct solution in the current step.
4.2.2 Analysing the time complexity
To analyse the running time of your algorithm, we need to analyse the work taken at each recursive step,
including the time taken to combine all previous solutions. This typically requires setting up a recurrence
and solve the recurrence for the asymptotic behaviour. To this end, we can use the Master Theorem stated
below. See the appendix for the extension of theMaster Theorem that may be applicable in some situations.
Let T (n) = aT (n/b) + f(n), where a ≥ 1 and b > 1. The Master Theorem says that:
 if there exist a constant ? > 0 such that f(n) = O (nlogb a??), then T (n) = Θ (nlogb a).
 if f(n) = Θ (nlogb a), then T (n) = Θ (nlogb a log n).
 if there exist a constant ? > 0 such that f(n) = ? (nlogb a+?) and if af(n/b) ≤ cf(n) for some
constant c < 1 for all sufficiently large n, then T (n) = Θ (f(n)).
If the recurrence does not fit any of these cases, then we need to unroll the recurrence.
7
COMP3121/9101: Algorithm Design and Analysis 2024, Term 2
5 Applications of Divide and Conquer
5.1 Tiling Problems
Let n be a power of two. An equilateral triangle is partitioned into smaller equilateral triangles by
parallel lines dividing each of its sides into n > 1 equal segments. The topmost equilateral triangle
is chopped off. We want to tile the remaining equilateral triangles with trapezoids, each of which is
composed of three equilateral triangles.
Design a divide and conquer algorithm to tile the equilateral triangles with trapzedoids. Justify the
correctness of the algorithm and analyse its time complexity.
 Every equilateral triangle must be covered by at least one trapezoid.
 No equilateral triangle may be tiled by more than one trapezoid.
Note. A tiling always exists.
5.2 Line Segment Intersections
You are given two lists of n points, one list P = [p1, . . . , pn] lies on the line y = 0 and the other list
Q = [q1, . . . , qn] lies on the line y = 1. We construct n line segments by connecting pi to qi for each
i = 1, . . . , n. You may assume that the numbers in P are distinct and the numbers in Q are also
distinct. Design an O(n log n) algorithm to return the number of intersections between every pair of
distinct line segments.
For example, the following instance
p1 p2 p3p4
q1q2q3 q4
should return 5 since there are five intersections.
8
COMP3121/9101: Algorithm Design and Analysis 2024, Term 2
5.3 Geometric Applications of Divide and Conquer
Alice is planting n1 flowers f1, . . . , fn1 among n2 rectangular gardens g1, . . . , gn2 . Bob’s task is to
determine which flowers belong to which gardens (possibly none). Alice informs Bob that no two
gardens overlap; therefore, if a flower belongs to a garden, then it belongs to exactly one garden.
Moreover, a garden can contain multiple flowers. If a flower does not belong to any garden, then Bob
returns undefined for that flower. Finally, let n = n1 + n2.
Figure 1: A collection of n1 = 5 flowers and n2 = 4 gardens.
We can define the location of a rectangular garden by identifying its bottom-left and top-right corners.
Additionally, flower fi is represented by a point F [i]. Formally, we are given three arrays:
 B = [(x1, y1), . . . , (xn2 , yn2)], where B[i] represents the bottom-left point of garden gi.
 T = [(x1, y1), . . . , (xn2 , yn2)], where T [i] represents the top-right point of garden gi.
 F = [(x1, y1), . . . , (xn1 , yn1)], where F [i] represents the location of flower fi.
For each flower fi, your task is to identify which garden (if any) contains fi. If a flower is not contained
inside any garden, then we return undefined.
(a) We first solve the special case where all of the gardens intersect with a horizontal line. Design
an O(n log n) algorithm to determine which flowers belong to which gardens (if such a garden
exists).
Figure 2: A collection of n1 = 6 flowers and n2 = 4 gardens that intersect with a horizontal line.
Hint. What do you know about two adjacent gardens if they have to intersect with a horizontal
line?
(b) We now remove the assumption that every garden intersects with a horizontal line. Design an
O(n log2 n) algorithm to determine which flowers belong to which gardens (if such a garden
exists).
Hint. If T (n) = 2T (n/2) +O(n log n), then T (n) = O(n log2 n).
Exercise. Reduce the time complexity to O(n log n).
9
COMP3121/9101: Algorithm Design and Analysis 2024, Term 2
Further practice exercises
In addition to your lab exercises, here is a curated list of further practice problems in preparation for your
exam. The problems are (approximately) ordered by difficulty. No solutions will be released for these
exercises; therefore, you may want to post on the forum if you have any queries.
1. Let A be an array of n integers. Further, suppose that A[1] ≥ A[2] and A[n? 1] ≤ A[n]. An element
A[i] is a local minimum if it satisfies the inequalities
A[i] ≤ A[i? 1], A[i] ≥ A[i+ 1].
Design an O(log n) algorithm that returns the index of a local minimum. For example, if A =
[1,3, 4, 3, 6, 8], then one possible answer is A[2] = ?3. Another possible answer is A[4] = 3.
2. You are handed n bottles from a genie, and the genie exclaims that exactly one of these bottles
contain the secret to eternal happiness. In order to play the game, the genie has a few rules:
 You pick up a set of bottles and can only ask the genie if any of these bottles contain the secret.
You are not allowed to peek inside any of the bottles; otherwise, you will banished forever!
? You can query any bottle an infinite number of times.
Since the genie knows you are an algorithm enthusiast, they will grant you only O(log n) queries. If
you need to use more thanO(log n) queries, then you will not receive the secret to eternal happiness.
Design an algorithm to win the game and unlock the secret to eternal happiness!
3. Let G = (V,E) be a connected and acyclic graph on n vertices. On this graph, you are guaranteed
that exactly one of these vertices contains a prize; however, you do not know which vertex it is. You
are allowed to query vertices and each query will tell you which edge you must travel on in order to
reach the prize, or “yes” if the current vertex you are querying on contains the prize.
Your task is to determine which vertex contains the prize using at most O(log n) queries.
Note. The time complexity of your algorithm might be slower than log n, but your algorithm can only
use at most O(log n) many queries.
(a) If G is a path (or line graph), design an O(n)-time algorithm that finds the prized vertex using
at most O(log n) many queries.
(b) For the remaining two parts, assume thatG is an arbitrary connected and acyclic graph. Design
an O(n2 log n)-time algorithm that finds the prized vertex using at most O(log n)many queries.
(c) Reduce the time complexity to O(n log n).
Note. Since G is connected and acyclic, |E| ≤ |V |.
4. Let A be an array of n objects. These objects may not necessarily be comparable and so, we cannot
test for inequality. Instead, we can only ask queries of the form: is A[i] = A[j]?. An element x is the
majority element whether x appears more than n/2 times. Design an O(n log n) algorithm to find
the majority element, or report that no such element exists.
Hint. Firstly, if a majority exists, then convince yourself that there is only one majority element. Yes...
there is an O(n) algorithm for this problem.
5. You have just landed at a sporting arena with n students, either from UNSW or USYD. Each student
is either from UNSW or USYD, and not both or neither. From their outward appearance, you cannot
tell which person is from which school and you cannot ask any student what school they are from;
otherwise, you will receive many stares. Instead, you devise a plan.
 You pick two arbitrary students and introduce them to one another. Two students from the same
school knows each other and will greet each other with a smile. Two students from opposing
schools will stare blankly at each other.
10
COMP3121/9101: Algorithm Design and Analysis 2024, Term 2
Suppose you know that more than half of the students belong to a particular school. Design an
O(n log n) algorithm to identify all students in the majority school.
Hint. Try to first find a student in the majority school. Maybe something similar to the previous problem
might help. Yes... this means that there is an O(n) algorithm for this problem too.
6. Let I = {I1, . . . , In} be a set of n intervals. Each interval Ii is specified by its two end points: ai and
bi with ai ≤ bi. Two intervals Ii and Ij overlap if there exist a point x such that x = Ii and x = Ij .
In other words, x = [ai, bi] and x = [aj , bj ]. Finally, the length of the overlap is given by the longest
interval that is shared between Ii and Ij . Formally, we can express this length as
L(i, j) = max{0,min{bi, bj} ?max{ai, aj}}.
Given n intervals, design an O(n log n) algorithm that returns the pair of intervals Ii and Ij that
maximises L(i, j). Your input is two arrays A[1..n] and B[1..n] such that A[i] specifies the beginning
of interval Ii and B[i] specifies the end of interval Ii.
7. Let L = {?1, . . . , ?n} be a set of n non-vertical lines, where line ?i is specified by the equation
y = aix + bi. Further, we will assume that no three lines intersect at a point. A line ?i is uppermost
at a point x0 if aix0 + bi > ajx0 + bj for all i ?= j. A line ?i is visible if there exist some x-coordinate
for which ?i is uppermost. In other words, if we look down from the line y =∞, then we can see a
portion of the line.
Design an O(n log n) algorithm that returns all of the visible lines.
Hint. Sort in increasing order of slope. Which two lines are always visible? When we combine two
subproblems, consider each intersection point. It might help to draw out a picture.
11
COMP3121/9101: Algorithm Design and Analysis 2024, Term 2
Appendix: Understanding Recurrences
A recurrence is a succinct description of a system that depends on itself, usually by calling itself multiple
times. For divide and conquer algorithms, we often split the problem instance into multiple smaller in-
stances of the same problem. To quickly analyse the running time of the algorithm, we usually write it as
a recurrence.
Let T (n) denote the running time of the algorithm on a problem of size n. Then, if we divide the problem
instance into a copies of itself, each of size n/b, then we can succinctly write T (n) in terms of T (n/b);
specifically,
T (n) = aT (n/b) + f(n),
where f(n) is the amount of overhead work used to combine all a subproblems. Pictorially, this recurrence
can be viewed exactly as a recursion tree.
Figure 3: Courtesy: Jeff Erickson’s Algorithms.
The total amount of work required of an algorithm with recurrence T (n) = aT (n/b) + f(n) is the sum of
the amount of work at each level; in other words, the amount of work is given by
T (n) = f(n) + af(n/b) + a2f(n/b2) + · · ·+ aLf(n/bL),
where L = logb n. The Master Theorem gives conditions on f(n), and the asymptotic complexity can be
resolved depending on which term dominates.
? If af(n/b) > cf(n) for some constant c > 1, then the series form an ascending geometric series. The
largest term in the series, therefore, is the last term and so, T (n) = Θ(nlogb a). To see why this is the
12
COMP3121/9101: Algorithm Design and Analysis 2024, Term 2
case, note that.
 If af(n/b) < cf(n) for some constant c > 1, then the series form a descending geometric series. The
largest term in the series, therefore, is the first term and so, T (n) = Θ(f(n)).
 If af(n/b) = f(n), then each term in the series contributes to the overall work required. Thus, in
this case, we have that
T (n) = Θ (f(n)L) = Θ (f(n) log n)
 Otherwise, this analysis is not applicable and we need to resort to other methods such as unrolling
the recurrence.
A.1 The Akra-Bazzi Method
The Akra-Bazzi method generalises the above discussion and provides a much more powerful result. In
doing this, we actually recover the Master Theorem in its stated form. To do this, we will firstly consider
a general divide and conquer recurrence:
T (n) =
L∑
i=1
aiT (n/bi) + f(n),
where L is a constant. Further, assume that ai > 0 and bi > 1 are constants for each i. These do not have
to be the same constants throughout; see exercise for an example. Finally, we will assume that f grows
polynomially; that is, we make the assumption that
f(n) = ?(nc), f(n) = O(nd),
with 0 < c ≤ d. Akra and Bazzi proved that the closed form solution to the recurrence is
T (n) = Θ
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp


















 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:菲律賓能帶回國的特產有哪些,旅游者深深被吸引!
  • 下一篇:菲律賓大使館補辦護照網上預約全流程詳解
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线
  • <dl id="akume"></dl>
  • <noscript id="akume"><object id="akume"></object></noscript>
  • <nav id="akume"><dl id="akume"></dl></nav>
  • <rt id="akume"></rt>
    <dl id="akume"><acronym id="akume"></acronym></dl><dl id="akume"><xmp id="akume"></xmp></dl>
    黄在线观看网站| 国产 国语对白 露脸| 成年人小视频网站| 欧美a级免费视频| 午夜免费高清视频| www..com日韩| 麻豆映画在线观看| 欧美一级特黄a| 欧美成人xxxxx| 国产一区 在线播放| 最新天堂中文在线| 欧美一区二区中文字幕| 亚洲另类第一页| 无码人妻丰满熟妇区毛片18| 亚洲小视频在线播放| 人人干人人干人人| 92看片淫黄大片一级| 免费成人午夜视频| 能看的毛片网站| 日韩毛片在线免费看| 日韩av一二三四区| 黄在线观看网站| 日本特黄a级片| 手机免费看av网站| 久久国产精品免费观看| 亚洲国产午夜精品| 亚洲理论中文字幕| 欧美这里只有精品| 91精品91久久久中77777老牛| 免费av手机在线观看| 99热一区二区| 欧美视频在线第一页| 中文字幕日本最新乱码视频| 777久久久精品一区二区三区| 日韩免费一级视频| 日本精品久久久久中文字幕| 欧美人与动牲交xxxxbbbb| 成人三级视频在线播放| 手机在线免费毛片| 日本黄大片一区二区三区| 老子影院午夜伦不卡大全| 99视频在线免费| 青青青国产在线观看| 不用播放器的免费av| 妞干网在线免费视频| 日本丰满大乳奶| 亚洲18在线看污www麻豆| 日本福利视频在线| 成年人网站国产| 国产日韩亚洲欧美在线| www.色.com| 99re99热| 欧美h视频在线观看| 手机在线国产视频| 手机看片一级片| 黄大色黄女片18第一次| 国产视频一区二区三区在线播放| 丰满女人性猛交| 色呦呦网站入口| www.国产福利| 国产精品无码免费专区午夜| 97干在线视频| 欧美一级黄色片视频| 99视频在线视频| 五月天婷婷影视| 国产一区二区三区小说| 国产又粗又猛又爽又黄的网站| 欧美一区二区三区综合| 久久综合色视频| 岛国av在线免费| 粉嫩av一区二区三区天美传媒| 老太脱裤让老头玩ⅹxxxx| 婷婷免费在线观看| 99精品一区二区三区的区别| 欧洲精品一区二区三区久久| 成人在线免费观看av| 中文字幕色网站| www.av91| 亚洲天堂第一区| 91看片破解版| 日韩视频第二页| 成人小视频在线看| 免费日韩中文字幕| 最新中文字幕2018| 2022亚洲天堂| 久久久久国产一区| 久久综合在线观看| 特大黑人娇小亚洲女mp4| 屁屁影院ccyy国产第一页| 丰满人妻一区二区三区53号| 国产日本在线播放| 97碰在线视频| 一级黄色大片儿| 我的公把我弄高潮了视频| 公共露出暴露狂另类av| 成人高清在线观看视频| 日韩少妇内射免费播放18禁裸乳| 在线免费视频a| www.日本一区| h无码动漫在线观看| av不卡在线免费观看| 成人小视频在线观看免费| 日韩中字在线观看| 国产精品97在线| 97人人模人人爽人人澡| www.亚洲成人网| jizzjizzxxxx| 欧美一级特黄a| 小说区视频区图片区| 黄色片视频在线免费观看| 黄色小视频免费网站| 国产精品69久久久| caoporm在线视频| 国产福利一区视频| 特级毛片在线免费观看| 日本黄网站免费| 99在线免费视频观看| 91亚洲一区二区| 色综合色综合色综合色综合| 欧美少妇在线观看| 女同激情久久av久久| av天堂永久资源网| 国产美女网站在线观看| 黄色激情在线视频| 二级片在线观看| 中国黄色录像片| 国产在线观看欧美| 日本美女爱爱视频| 69精品丰满人妻无码视频a片| 91看片破解版| 亚洲小视频在线播放| 性欧美18一19内谢| 日本一二三区视频在线| 日韩在线观看a| 国产超级av在线| 亚洲一区二区福利视频| 一级片黄色免费| 成人精品视频在线播放| 国产xxxxx视频| 公共露出暴露狂另类av| 97xxxxx| 自拍偷拍21p| 美女扒开大腿让男人桶| 波多野结衣家庭教师在线| 在线观看国产中文字幕| 国产91沈先生在线播放| 五月天婷婷激情视频| 久久亚洲国产成人精品无码区| 日本免费不卡一区二区| 久久福利一区二区| 国产福利片一区二区| 97xxxxx| 日本一级黄视频| 一区二区三区四区久久| 韩国中文字幕av| 久久婷婷五月综合色国产香蕉| 久久免费看毛片| 在线播放免费视频| 青青在线视频免费| 国内自拍视频网| 国产视频在线视频| 熟妇人妻va精品中文字幕| 极品美女扒开粉嫩小泬| 国产女大学生av| 日本三区在线观看| 国产女主播自拍| 久久久久久久激情| 国产男女在线观看| 国产av人人夜夜澡人人爽| 久久国产乱子伦免费精品| 久久黄色免费看| 自拍偷拍一区二区三区四区| 欧美黄色性生活| 国产女人18毛片| 国内外成人免费激情视频| 国产理论在线播放| 国产精品视频一二三四区| 日本在线xxx| 国产精品v日韩精品v在线观看| 热久久精品免费视频| 中国一级大黄大黄大色毛片| 日韩精品视频一区二区在线观看| 99免费视频观看| 91视频最新入口| 中文字幕免费高| 一道本在线免费视频| 日韩一级免费看| 日本中文字幕精品—区二区| 国产日本在线播放| 亚洲自拍偷拍一区二区三区| 精品国产成人av在线免| 欧美a级免费视频| 四虎4hu永久免费入口| 亚洲男人天堂av在线| 亚洲欧美日本一区二区| 日本va中文字幕| av免费一区二区| 国产一级片自拍| 久久这里只有精品18| 加勒比海盗1在线观看免费国语版|