狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线

代寫 CSCI1440/2440 Homework 3

時間:2024-02-16  來源:  作者: 我要糾錯


Homework 3: Myerson’s Lemma CSCI1440/2440

2024-02-08

Due Date: Tuesday, February 20, 2024. 11:59 PM.

We encourage you to work in groups of size two. Each group need only submit one solution. Your submission must be typeset using LATEX. Please submit via Gradescope with you and your partner’s Banner ID’s and which course you are taking.

For 1000-level credit, you need only solve the first three problems. For 2000-level credit, you should solve all four problems.

1 The All-Pay Auction

In an all-pay auction, the good is awarded to the highest bidder, but rather than only the winner paying, all bidders i must pay their bid: i.e., ui = vixi − pi.

Using the envelope theorem, derive (necessary conditions on) the symmetric equilibrium of a symmetric all-pay auction in which the bidders’ values are drawn i.i.d. from some bounded distribution F.

2 Allocation Rule Discontinuity

Fix a bidder i and a profile v−i. Myerson’s lemma tells us that incen-

tive compatibility and individual rationality imply two properties: 1. Allocation monotonicity: one’s allocation should not decrease as

 one’s value vi increases.

2. Myerson’s payment formula:

Z vi 0

pi(vi,v−i) = vixi(vi,v−i)−

xi(z,v−i)dz,

∀i ∈ [n],∀vi ∈ Ti,∀v−i ∈ T−i. (1)

In a second-price auction, the allocation rule is piecewise constant on any continuous interval. That is, bidder i’s allocation function is a Heaviside step function,1 with discontinuity at vi = b∗, where b∗ is the highest bid among all bidders other than i (i.e., b∗ = maxj̸=i vj):

1, if vi ≥ b∗ xi(vi,v−i) =

0, otherwise. Observe that ties are broken in favor of bidder i.

1 This is the canonical step function, whose range is [0, 1].

 

Given this allocation rule, the payment formula tells us what i should pay, should they be fortunate enough to win:

Z vi 0

pi(vi,v−i) = vixi(vi,v−i)−

?Z b∗

xi(z,v−i)dz

=vi(1)−

= vi(1)−(0+vi −b∗)

= b∗.

Alternatively, by integrating along the y-axis (i.e., R f (b) f −1 (y)dy),2

f (a)

bidder i’s payment can be expressed as follows: for ε ∈ (0, 1),

2 As the allocation function, call it f , is not invertible, but is weakly

increasing and right continuous, we define f(−1)(y) = inf{x | f(x) ≥ y}: e.g., f−1(1/2) = b∗.

Z vi ?dx (z,v )? pi(vi,v−i) = z i −i dz

Z ε Z 1−ε ?dxi(z,v−i)? = z(0)dz+ z

Z vi ? 0dz+ ∗ 1dz

0b

homework 3: myerson’s lemma 2

0 dz

0 ε dz 1−ε Z1−ε ∗

= bdy ε

∗ Z 1−ε =b dy ε

= b∗,

because the inverse of the allocation function is b∗, for all y ∈ (0, 1),

and limε→0 R 1−ε dy = 1. Intuitively, we can conclude the following ε

from this derivation: pi(vi, v−i) = b∗ · [jump in xi(·, v−i) at b∗]. Suppose that the allocation rule is piecewise constant on the con-

tinuous interval [0, vi], and discontinuous at points {z1, z2, . . . , zl} in this interval. That is, there are l points at which the allocation jumps from x(zj, v−i) to x(zj+1, v−i) (see Figure 1). Assuming this “jumpy” allocation rule is weakly increasing in value, prove that Myerson’s payment rule can be expressed as follows:

l

pi(vi, v−i) = ∑ zj · ?jump in xi(·, v−i) at zj? . (2) j=1

3 Sponsored Search Extension

In this problem, we generalize our model of sponsored search to include an additional quality parameter βi > 0 that characterizes each bidder i. With this additional parameter, we can view αj as the probability a user views an ad, and βi as the conditional probability that a user then clicks, given that they are already viewing the ad. Note that αj, the view probability, depends only on the slot j, not

Z 1

dz+ z(0)dz

 

xi(z3, v−i) xi(z2, v−i) xi(z1, v−i)

Figure 1: Allocation Rule. Shaded area represents payment.

z1z2 z3 Value, vi

on the advertiser occupying that slot, while βi, the conditional click probablity, explicitly depends on the advertiser i.

In this model, given bids v, bidder i’s utility is given by: ui(v) = βivix(v) − p(v)

So if bidder i is allocated slot j, their utility is: ui(v) = βiviαj − p(v)

Like click probabilities, you should assume qualities are public, not private, information.

1.

2.

4

optimization. The problem can be stated as follows:

There is a knapsack, which can hold a maximum weight of W ≥ 0. There are n items; each item i has weight wi ≤ W and value vi ≥ 0. The goal is to find a subset of items of maximal total value with total weight no more than W.

Written as an integer linear program,

n

max ∑ xivi

x i=1

Define total welfare for this model of sponsored search, and then describe an allocation rule that maximizes total welfare, given the bidders’ reports. Justify your answer.

Argue that your allocation rule is monotonic, and use Myerson’s characterization lemma to produce a payment rule that yields a DSIC mechanism for this sponsored search setting.

The Knapsack Auction

The knapsack problem is a famous NP-hard3 problem in combinatorial

3 There are no known polynomial-time solutions.

homework 3: myerson’s lemma 3

Allocation, xi(vi, v−i)

 

subject to

n

∑xiwi ≤W i=1

xi∈{0,1}, ∀i∈[n]

The key difference between optimization and mechanism design problems is that in mechanism design problems the constants (e.g., vi and wi) are not assumed to be known to the center / optimizer; on the contrary, they must be elicted, after which the optimization problem can then be solved as usual.

With this understanding in mind, we can frame the knapsack problem as a mechanism design problem as follows. Each bidder

has an item that they would like to put in the knapsack. Each item is characterized by two parameters—a public weight wi and a private value vi. An auction takes place, in which bidders report their values. The auctioneer then puts some of the items in the knapsack, and the bidders whose items are selected pay for this privilege. One real- world application of a knapsack auction is the selling of commercial snippets in a 5-minute ad break (e.g., during the Superbowl).4

Since the problem is NP-hard, we are unlikely to find a polynomial- time welfare-maximizing solution. Instead, we will produce a polynomial- time, DSIC mechanism that is a 2-approximation of the optimal wel-

fare. In particular, for any set possible set of values and weights, we

aim to always achieve at least 50% of the optimal welfare.

We propose the following greedy allocation scheme: Sort the bid- ders’ items in decreasing order by their ratios vi/wi, and then allocate items in that order until there is no room left in the knapsack.

1. Show that the greedy allocation scheme is not a 2-approximation by producing a counterexample where it fails to achieve 50% of the optimal welfare.

Alice proposes a small improvement to the greedy allocation scheme. Her improved allocation scheme compares the welfare achieved by the greedy allocation scheme to the welfare achieved

by simply putting the single item of highest value into the knapsack.5 She then uses whichever of the two approaches achieves greater wel- fare. It can be shown that this scheme yields a 2-approximation of optimal welfare. We will use it to create a mechanism that satisfies individual rationality and incentive compatibility.

2. Argue that Alice’s allocation scheme is monotone.

3. Now use Myerson’s payment formula to produce payments such that the resulting mechanism is DSIC and IR.

4 Here, the weight of a commercial is its time in seconds.

homework 3: myerson’s lemma 4

5 Note that weakly greater welfare could be achieved by greedily filling the knapsack with items in decreasing order of value until no more items

fit. We do not consider this scheme, because it is unnecessary to achieve

a 2-approximation; however, it is an obvious heuristic that anyone solving this problem in the real world
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫ACP Assignment 1 Specificaons
  • 下一篇:代做ECON 323 Econometric Analysis 2
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线
  • <dl id="akume"></dl>
  • <noscript id="akume"><object id="akume"></object></noscript>
  • <nav id="akume"><dl id="akume"></dl></nav>
  • <rt id="akume"></rt>
    <dl id="akume"><acronym id="akume"></acronym></dl><dl id="akume"><xmp id="akume"></xmp></dl>
    台湾无码一区二区| 中文字幕乱码免费| 亚洲最新免费视频| 2025韩国理伦片在线观看| 中国老女人av| 国产av第一区| 一级黄色香蕉视频| 国产原创popny丨九色| 日韩video| 国产 porn| 日韩av加勒比| 五月天六月丁香| 在线观看污视频| 成年人三级黄色片| 青青草影院在线观看| 午夜精品中文字幕| 激情五月婷婷久久| 成年人三级视频| 国产免费视频传媒| 成人一级生活片| 男女午夜激情视频| 不卡中文字幕在线观看| 自拍一级黄色片| 国产 欧美 日本| www.日本少妇| av网站手机在线观看| 午夜免费视频网站| 日本黄大片一区二区三区| 精品一区二区中文字幕| 精品国产一二三四区| aaaaaaaa毛片| av在线观看地址| 久久午夜夜伦鲁鲁一区二区| 成人午夜免费剧场| 中文字幕一区二区三区四区五区人 | 国产v片免费观看| av7777777| 每日在线更新av| 久久黄色片网站| 色一情一区二区三区| 久久国产精品国产精品| av在线免费看片| 国产精品99久久久久久大便| 超碰在线免费观看97| 国产www免费| 国产精品少妇在线视频| 亚洲在线观看网站| 免费观看中文字幕| www.成年人视频| 久久精品国产精品亚洲色婷婷| 成人精品视频一区二区| 午夜免费看视频| 天天操天天干天天玩| 草b视频在线观看| 国产精品亚洲αv天堂无码| 国产情侣av自拍| 色呦呦网站入口| 日韩av在线第一页| 九色porny自拍| 久久亚洲国产成人精品无码区 | 丁香啪啪综合成人亚洲| 91高清国产视频| 国产aaa免费视频| 国产又大又黄又粗的视频| 99九九99九九九99九他书对| 国产欧美精品aaaaaa片| 啊啊啊国产视频| 肉大捧一出免费观看网站在线播放 | 最新中文字幕久久| 男女高潮又爽又黄又无遮挡| 欧美午夜aaaaaa免费视频| 在线观看17c| 午夜免费看视频| 精品视频在线观看一区| 亚洲免费黄色录像| 女人扒开屁股爽桶30分钟| 午夜影院免费版| 激情六月丁香婷婷| 国产经典久久久| 色综合色综合色综合色综合| 久草视频国产在线| 欧美性猛交xxxx乱大交91| 免费看一级大黄情大片| 欧美性受xxxx黑人猛交88| 韩国中文字幕av| 麻豆传传媒久久久爱| 国产成人一区二区三区别| 亚洲高清av一区二区三区| 亚洲少妇第一页| 国产 福利 在线| 激情五月六月婷婷| 91香蕉视频在线观看视频| 91国产精品视频在线观看| 男人操女人免费软件| 国产夫妻自拍一区| 亚洲最新免费视频| 久久久久久综合网| 成人性生交免费看| 天天爽天天爽夜夜爽| 久久久久久久久久久久久久国产| 日本香蕉视频在线观看| 男女啪啪免费观看| 国产精品三级一区二区| 91香蕉视频网址| 毛片毛片毛片毛片毛| 爱爱爱爱免费视频| 尤物国产在线观看| 免费一区二区三区在线观看| 亚洲五月天综合| 精品www久久久久奶水| 免费av网址在线| 亚洲成色www.777999| 久久久久免费精品| 日本激情视频在线| av在线网址导航| 性欧美18一19内谢| 色婷婷综合在线观看| 免费成人深夜夜行网站视频| 国产一二三四五| 日韩欧美一级在线| 欧美在线观看视频免费| 久久久久久久午夜| 久久久久久香蕉| 日本美女视频一区| 精品久久免费观看| 欧美亚洲色图视频| 九色在线视频观看| 成人性视频欧美一区二区三区| 一道本视频在线观看| 91精品视频国产| 男人添女荫道口图片| 国产l精品国产亚洲区久久| www.涩涩涩| 国产在线拍揄自揄拍无码| 熟女少妇在线视频播放| 国产精品一区二区羞羞答答| 两性午夜免费视频| 免费看毛片的网址| 中文字幕亚洲乱码| 久久最新免费视频| 精品人妻一区二区三区四区在线| 亚洲一区二区蜜桃| 六月婷婷激情网| 亚洲精品无码久久久久久| 99re6在线观看| 男女日批视频在线观看| 校园春色 亚洲色图| 永久免费看av| 热久久精品免费视频| 久久国产精品免费观看| av观看免费在线| 国产av不卡一区二区| aⅴ在线免费观看| 7777在线视频| 手机在线免费观看毛片| 蜜桃视频一区二区在线观看| 一本色道无码道dvd在线观看| 伊人五月天婷婷| 久草精品在线播放| 欧美亚洲黄色片| 99sesese| 国内外免费激情视频| 久久久久久久香蕉| 一级淫片在线观看| 日日碰狠狠躁久久躁婷婷| 久久最新免费视频| 天天干天天玩天天操| 国产在线精品91| 成年在线观看视频| 亚洲天堂网2018| 国产二区视频在线播放| 丰满人妻一区二区三区53号| 成人性生交免费看| 久久久久免费精品| 无码播放一区二区三区| 少妇大叫太大太粗太爽了a片小说| 国产三级生活片| 国产a视频免费观看| 性欧美大战久久久久久久| 天堂网成人在线| xxxx在线免费观看| 免费看黄色一级大片| 国产深夜男女无套内射| 蜜臀精品一区二区| 狠狠精品干练久久久无码中文字幕| 日本三级黄色网址| 久久黄色片网站| 中文字幕第38页| 中文字幕 91| 日韩高清第一页| 欧美国产日韩另类| 亚欧美在线观看| 成人综合久久网| 九九九久久久久久久| 天天操夜夜操很很操| 蜜臀av.com| 黄网站色视频免费观看 | 亚洲综合激情视频| 亚洲精品在线网址| 日韩一二区视频|