狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线

代做3 D printer materials estimation編程

時間:2024-02-21  來源:  作者: 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate 90% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a 90% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct 90% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a 1-row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫game of Bingo cards
  • 下一篇:代寫PLAN60722 – Urban Design Project
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线
  • <dl id="akume"></dl>
  • <noscript id="akume"><object id="akume"></object></noscript>
  • <nav id="akume"><dl id="akume"></dl></nav>
  • <rt id="akume"></rt>
    <dl id="akume"><acronym id="akume"></acronym></dl><dl id="akume"><xmp id="akume"></xmp></dl>
    老司机午夜av| 黄色国产小视频| av免费观看网| 九热视频在线观看| 人人干人人干人人| 日韩伦理在线免费观看| 亚洲五月天综合| www.成年人| 免费看毛片的网址| 99久久久无码国产精品6| 欧美亚洲日本在线观看| 欧美精品 - 色网| 成人综合视频在线| 不卡中文字幕在线观看| 成熟丰满熟妇高潮xxxxx视频| 激情视频免费网站| 亚洲色欲久久久综合网东京热| jizzjizz国产精品喷水| 在线a免费观看| 国产精品亚洲αv天堂无码| 三级在线免费观看| 男女视频在线看| 污片在线免费看| 国产高清av片| 涩涩网站在线看| 成人黄色一级大片| 欧美日韩第二页| 97在线播放视频| 国产精品免费观看久久| 青青在线视频免费观看| 男人透女人免费视频| 91国产精品视频在线观看| 国产午夜福利100集发布| 免费看一级大黄情大片| 无码播放一区二区三区| 亚洲综合激情五月| www.xxx麻豆| 久激情内射婷内射蜜桃| 欧美激情成人网| wwwwwxxxx日本| av片在线免费| 国产wwwxx| 欧美久久在线观看| 午夜精品久久久内射近拍高清| 国产精品wwwww| av磁力番号网| 乱子伦视频在线看| 中文字幕一区久久| 奇米精品一区二区三区| 国产精欧美一区二区三区白种人| 国产成人久久婷婷精品流白浆| 美女福利视频在线| 国产高清不卡无码视频| 乌克兰美女av| 日韩毛片在线免费看| 国产素人在线观看| 成年人网站国产| 91黄色在线看| 久久久天堂国产精品| 在线播放 亚洲| 粉色视频免费看| 伊人成人222| 999久久久精品视频| 99九九精品视频| 国产麻豆电影在线观看| 成人性做爰片免费视频| 国产在线拍揄自揄拍无码| 女同性恋一区二区| 久久99久久久久久| 福利视频免费在线观看| 欧美日韩福利在线| 六月丁香婷婷激情| 亚洲这里只有精品| 亚洲精品国产久| 丰满的少妇愉情hd高清果冻传媒| 男人插女人视频在线观看| 国产精品沙发午睡系列| 天天爽人人爽夜夜爽| 三级黄色片免费观看| 伊人再见免费在线观看高清版 | 妺妺窝人体色www在线观看| 波多野结衣天堂| 亚洲热在线视频| 男女激情免费视频| 3d动漫一区二区三区| 天天碰免费视频| 欧美激情国内自拍| 国产精品网站免费| 久久国产激情视频| 丁香花在线影院观看在线播放| 国产一区亚洲二区三区| 午夜视频在线观| 女人帮男人橹视频播放| 日本黄色三级大片| 深爱五月综合网| www精品久久| 日本高清久久久| 国产精品一区二区免费在线观看| 狠狠躁狠狠躁视频专区| 国产精品99久久久久久大便| 成人免费观看视频在线观看| 五月天中文字幕在线| 欧美亚洲另类色图| 992tv快乐视频| www欧美激情| 干日本少妇首页| 国产精品av免费观看| 天天干天天操天天做| 99精品人妻少妇一区二区| 欧美aaa在线观看| 中文字幕国内自拍| 亚洲 高清 成人 动漫| 日本一道在线观看| 国产乱码一区二区三区四区| 免费 成 人 黄 色| 国产xxxx振车| 一级黄色片播放| 蜜桃福利午夜精品一区| 黄色免费网址大全| 少妇性l交大片| 亚洲午夜精品久久久久久人妖| av久久久久久| 免费的一级黄色片| 中文字幕の友人北条麻妃| 亚洲a级黄色片| 九九热免费在线观看| 999精彩视频| 色悠悠久久综合网| 一本大道熟女人妻中文字幕在线 | 欧美国产视频一区| 麻豆传媒网站在线观看| 91九色国产ts另类人妖| 手机在线视频你懂的| 亚洲图片 自拍偷拍| 天天干天天色天天干| 中文字幕精品一区二区三区在线| 99视频在线免费| 亚洲黄色小视频在线观看| 日本激情视频在线| 国产福利在线免费| 中文字幕免费高清在线| 在线播放黄色av| 潘金莲一级淫片aaaaa免费看| 国产一区一区三区| 国产一区二区三区小说| 国产极品在线视频| 欧美日韩大尺度| 亚洲精品第三页| 少妇高潮大叫好爽喷水| 黄色大片中文字幕| 青青在线视频观看| 国产免费中文字幕| 99热这里只有精品免费| 国产婷婷一区二区三区| av观看免费在线| 日韩视频在线观看一区二区三区| www.色欧美| 老司机午夜免费福利视频| 激情深爱综合网| xxww在线观看| 久久这里只有精品18| 免费观看成人在线视频| 亚洲欧美一区二区三区不卡| 欧美日韩中文字幕在线播放| 日本wwww视频| 国产高清免费在线| 日本在线视频www| 神马午夜伦理影院| 亚洲精品无码久久久久久| 亚洲热在线视频| 美女福利视频在线| 亚洲综合20p| 一本久道中文无码字幕av| 日韩 欧美 自拍| 国产又黄又猛视频| 国产专区在线视频| 天天干天天玩天天操| 2018国产在线| 久久免费视频2| 少妇激情一区二区三区| 国产免费裸体视频| 亚洲精品中文字幕乱码无线| 国产精品一区二区免费在线观看| 四虎成人在线播放| 美女黄色片视频| 精品无码一区二区三区在线| 91亚洲一区二区| 91福利国产成人精品播放| 日韩成人三级视频| 亚洲av毛片在线观看| 久久国产色av免费观看| 九色自拍视频在线观看| 国内外成人激情免费视频| 一区二区三区 日韩| 国产裸体舞一区二区三区| 免费高清一区二区三区| 激情视频小说图片| 黄瓜视频免费观看在线观看www| 午夜激情在线观看视频| 亚洲欧洲日产国码无码久久99|