狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线

代寫DTS101TC Introduction to Neural Networks Coursework

時間:2024-03-01  來源:  作者: 我要糾錯


Due: Sunday Apr.21th, 2024 @ 17:00

Weight: 100%

Overview

This coursework is the sole assessment for DTS101TC and aims to evaluate your compre-hension of the module. It consists of three sections: 'Short Answer Question', 'Image Classification Programming', and 'Real-world Application Question'. Each question must be answered as per the instructions provided in the assignment paper. The programming task necessitates the use of Python with PyTorch within a Jupyter Notebook environment, with all output cells saved alongside the code.

Learning Outcomes

A.   Develop an understanding of neural networks  –  their architectures, applications  and limitations.

B.   Demonstrate the ability to implement neural networks with a programming language

C.   Demonstrate the  ability to provide critical analysis on real-world problems and design suitable solutions based on neural networks.

Policy

Please save your assignment in a PDF document, and package your code as a ZIP file. If there are any errors in the program, include debugging information. Submit both the answer sheet and the ZIP code file via Learning Mall Core to the appropriate drop box. Electronic submission is the only method accepted; no hard copies will be accepted.

You must download your file and check that it is viewable after submission. Documents may become  corrupted  during  the  uploading  process  (e.g.  due  to  slow  internet  connections). However, students themselves are responsible for submitting a functional and correct file for assessments.

Avoid Plagiarism

.     Do NOT submit work from others.

.     Do NOT share code/work with others.

.     Do NOT copy and paste directly from sources without proper attribution.

.     Do NOT use paid services to complete assignments for you.

Q1. Short Answer Questions [40 marks]

The questions test general knowledge and understanding of central concepts in the course. The answers should be short. Any calculations need to be presented.

1.  (a.)  Explain the concept of linear separability. [2 marks]

(b.)  Consider the following data points from two categories: [3 marks]

X1  : (1, 1)    (2, 2)    (2, 0);

X2  : (0, 0)    (1, 0)    (0, 1).

Are they linearly separable? Make a sketch and explain your answer.

2.  Derive the gradient descent update rule for a target function represented as

od  = w0 + w1 x1 + ... + wnxn

Define the squared error function first, considering a provided set of training examples D, where each training example d ∈ D is associated with the target output td. [5 marks]

3.  (a.)  Draw a carefully labeled diagram of a 3-layer perceptron with 2 input nodes, 3 hidden nodes, 1 output node and bias nodes. [5 marks]

(b.)  Assuming that the activation functions are simple threshold, f(y) = sign(y), write down the input- output functional form of the overall network in terms of the input-to-hidden weights, wab , and the hidden-to-output weights, ˜(w)bc. [5 marks]

(c.)  How many distinct weights need to be trained in this network? [2 marks]

(d.)  Show that it is not possible to train this network with backpropagation. Explain what modification is necessary to allow backpropagation to work. [3 marks]

(e.)  After you modified the activation function, using the chain rule, calculate expressions for the fol- lowing derivatives

(i.) ∂J/∂y / (ii.) ∂J/∂˜(w)bc

where J is the squared error, and t is the target. [5 marks]

4.  (a.)  Sketch a simple recurrent network, with input x, output y, and recurrent state h. Give the update equations for a simple RNN unit in terms of x, y, and h. Assume it usestanh activation. [5 marks]

(b.)  Name one example that can be more naturally modeled with RNNs than with feedforward neural networks?  For a dataset X := (xt ,yt )1(k), show how information is propagated by drawing a feed-

forward neural network that corresponds to the RNN from the figure you sketch for k = 3.  Recall that a feedforward neural network does not contain nodes with a persistent state. [5 marks]

Q2. Image Classification Programming [40 marks]

For this  question,  you  will  build your  own image  dataset  and  implement a neural network  by Pytorch.   The question is split in a number of steps.  Every  step  gives you some marks.  Answer the  questions for  each step and include the screenshot of code  outputs  in your answer sheet.

- Language and Platform Python  (version  3.5  or  above)  with  Pytorch  (newest  version). You  may  use any libraries available on Python platform, such as numpy, scipy, matplotlib, etc.  You need to run the code in the jupyter notebook.

- Code Submission All of your dataset,  code  (Python files and ipynb files) should be  a package in a single ZIP file,  with  a PDF of your IPython  notebook with  output cells. INCLUDE your dataset in the zip file.

1. Dataset Build [10 marks]

Create an image dataset for classification with 120 images ( ‘.jpg’  format), featuring at least two cate- gories. Resize or crop the images to a uniform size of 128 × 128 pixels.  briefly describe the dataset you constructed.

2. Data Loading [10 marks]

Load your dataset, randomly split the set into training set (80 images), validation set (20 images) and test set (20 images).

For the training set, use python commands to display the number of data entries, the number of classes, the number of data entries for each classes, the shape of the image size.  Randomly plot 10 images in the training set with their corresponding labels.

3. Convolutional Network Model Build [5 marks]

//  pytorch .network

class  Network(nn.Module):

def  __init__ (self,  num_classes=?):

super(Network,  self).__init__ ()

self.conv1  =  nn.Conv2d(in_channels=3,  out_channels=5,  kernel_size=3,  padding=1) self.pool  =  nn.MaxPool2d(2,  2)

self.conv2  =  nn.Conv2d(in_channels=5,  out_channels=10,  kernel_size=3,  padding=1) self.fc1  =  nn.Linear(10  *  5  *  5,  100)

self.fc2  =  nn.Linear(100,  num_classes)

def  forward(self,  x):

x  =  self.pool(F.relu(self.conv1(x)))

x  =  self.pool(F.relu(self.conv2(x)))

x  =  x.view(-1,  10  *  5  *  5)

x  =  self.fc1(x)

x  =  self.fc2(x)

return  x

Implement Network, and complete the form below according to the provided Network. Utilize the symbol ‘-’ to represent sections that do not require completion. What is the difference between this model and AlexNet?

Layer

# Filters

Kernel Size

Stride

Padding

Size of

Feature Map

Activation Function

Input

Conv1


ReLU

MaxPool

Conv2


ReLU

FC1


-

-

-


ReLU

FC2


-

-

-

4. Training [10 marks]

Train the above Network at least 50 epochs. Explain what the lost function is, which optimizer do you use, and other training parameters, e.g., learning rate, epoch number etc.  Plot the training history, e.g., produce two graphs (one for training and validation losses, one for training and validation accuracy) that each contains 2 curves. Have the model converged?

5. Test [5 marks]

Test the trained model on the test set.  Show the accuracy and confusion matrix using python commands.

Q3. Real-world Application Questions [20 marks]

Give ONE specific  real-world problem  that  can  be  solved  by  neural networks.   Answer  the  questions  below (answer to  each  question should not  exceed 200 words) .

1.  Detail the issues raised by this real-world problem, and explain how neural networks maybe used to address these issues. [5 marks]

2.  Choose an established neural network to tackle the problem.  Specify the chosen network and indicate the paper in which this model was published. Why you choose it? Explain. [5 marks]

3.  How to collect your training data?  Do you need labeled data to train the network?  If your answer is yes, 請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代做代寫COMPSCI 4091 Advanced Networked Systems
  • 下一篇:CSCI 2033代做、代寫Python, C++/Java編程
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线
  • <dl id="akume"></dl>
  • <noscript id="akume"><object id="akume"></object></noscript>
  • <nav id="akume"><dl id="akume"></dl></nav>
  • <rt id="akume"></rt>
    <dl id="akume"><acronym id="akume"></acronym></dl><dl id="akume"><xmp id="akume"></xmp></dl>
    日韩不卡一二三| 黄色影院一级片| 欧美一区二区三区爽大粗免费| 亚洲视频在线观看一区二区三区| 色婷婷激情视频| 国产精品亚洲a| www.成年人视频| 91精品国产三级| 欧美黄色性生活| www.欧美黄色| 欧美日韩一区二区三区电影| 情侣黄网站免费看| 欧美一区二区激情| 国产午夜精品视频一区二区三区| xx欧美撒尿嘘撒尿xx| 男人操女人免费软件| 国产精品久久久久久久久电影网| 男人的天堂最新网址| 亚洲黄色小视频在线观看| 少妇无码av无码专区在线观看| 毛片av在线播放| 日本精品福利视频| 久久久久久久久久伊人| www国产无套内射com| 伊人网在线免费| 亚洲精品偷拍视频| 欧美 国产 精品| 久久久无码中文字幕久...| 亚洲天堂av免费在线观看| 色戒在线免费观看| 国产精品久久久久久久av福利| 91丨九色丨蝌蚪| 五月天国产视频| 玖玖精品在线视频| 日韩一级片一区二区| 成人小视频在线观看免费| 国产一级不卡视频| 青青草精品视频在线| 99色这里只有精品| 99热成人精品热久久66| 日韩有码免费视频| 一本色道久久亚洲综合精品蜜桃 | 色综合色综合色综合色综合| 男操女免费网站| 青娱乐精品在线| 国产精品国三级国产av| 欧美网站免费观看| 人人干人人干人人| 国产精品一区在线免费观看| 777av视频| the porn av| 日韩视频一二三| 欧美大片在线播放| 91极品视频在线观看| 99亚洲国产精品| 成人在线观看你懂的| 色婷婷成人在线| 国产精品啪啪啪视频| 免费观看精品视频| 日本高清免费观看| 日韩在线xxx| 天堂av免费看| 99re在线视频免费观看| 久久久国产精华液999999 | 国产 欧美 日韩 一区| 国产淫片av片久久久久久| 大桥未久一区二区三区| 狠狠爱免费视频| 美女av免费观看| 亚洲国产高清av| 日韩精品一区二区三区久久| 欧美视频在线播放一区| 五月婷婷六月丁香激情| 日韩极品视频在线观看| 超碰在线资源站| 91国产精品视频在线观看| 日韩精品免费一区| 涩多多在线观看| 黄色成人免费看| 日本www在线播放| 男女啪啪的视频| 亚洲精品久久久久久宅男| 欧美亚洲国产成人| 欧美日韩一道本| 久久99久久99精品| 亚洲成年人专区| 国内精品国产三级国产aⅴ久| 超碰影院在线观看| 99999精品视频| 国产免费一区二区三区视频| 777av视频| 国产无限制自拍| 国产91在线亚洲| 国产自产在线视频| 99久久国产综合精品五月天喷水| 亚洲精品无码久久久久久| 人妻av中文系列| 91九色丨porny丨国产jk| www.xxx麻豆| 北条麻妃在线视频观看| 青春草国产视频| 蜜桃传媒一区二区三区| av免费看网址| 99在线免费视频观看| 成年人网站国产| 国产精品宾馆在线精品酒店| av网站在线观看不卡| 成年人视频网站免费观看| 久久综合色视频| 37pao成人国产永久免费视频| 欧美黑人又粗又大又爽免费| 精品少妇无遮挡毛片| 中文字幕中文在线| 日本一道在线观看| 国产一区二区视频播放| 欧美日韩午夜爽爽| 美脚丝袜脚交一区二区| 免费看一级大黄情大片| 欧美一级特黄a| 亚洲一区二区偷拍| 久久精品xxx| 五月婷婷激情久久| xxxxxx在线观看| 精品丰满人妻无套内射| 欧美视频第三页| 国内av免费观看| 久色视频在线播放| 欧洲美女亚洲激情| 国模吧无码一区二区三区| 亚洲免费一级视频| 久久99久久久久久| 自拍偷拍21p| 777精品久无码人妻蜜桃| www.com操| 男人和女人啪啪网站| 在线免费观看av的网站| wwwwww欧美| 91亚洲精品久久久蜜桃借种| 成人午夜免费在线| 肉色超薄丝袜脚交| 别急慢慢来1978如如2| 久久久久久久香蕉| 一级黄色片国产| 欧美成人免费高清视频| 日韩成人三级视频| 天天操狠狠操夜夜操| 国产成人久久777777| 999久久欧美人妻一区二区| 国内自拍视频一区| aa视频在线播放| 久久久久福利视频| 亚洲视频第二页| 久久久久免费精品| 国产黄视频在线| 精品久久久久久无码中文野结衣| 中国黄色片一级| 五月婷婷丁香综合网| 97xxxxx| 激情六月天婷婷| 99中文字幕在线观看| 色偷偷中文字幕| 做a视频在线观看| 亚洲天堂国产视频| 久久久久久久片| www亚洲成人| 五月婷婷丁香色| 欧美特黄aaa| 久久久精品高清| 91高清国产视频| 91女神在线观看| 日本在线播放一区二区| 色91精品久久久久久久久| 最新av免费在线观看| 樱花草www在线| 欧美 另类 交| 日本五级黄色片| 国产无限制自拍| 91av在线免费播放| 黄色手机在线视频| 亚洲午夜激情影院| 欧美做受777cos| 日韩黄色片在线| 国产女女做受ⅹxx高潮| 久久黄色免费看| www.五月天色| 真实国产乱子伦对白视频| 欧美国产日韩激情| 成年人在线看片| 交换做爰国语对白| 激情五月婷婷六月| 美女福利视频在线| 91视频这里只有精品| 国产在线无码精品| 粉嫩虎白女毛片人体| 亚洲天堂2018av| 色哺乳xxxxhd奶水米仓惠香| 久久黄色片视频| 亚洲18在线看污www麻豆| 丁香婷婷综合激情| 亚洲第一狼人区|