狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线

代寫DTS304TC、代做Java/c++程序語言

時間:2024-03-04  來源:  作者: 我要糾錯



XJTLU Entrepreneur College (Taicang) Cover Sheet
Module code and Title DTS304TC Machine Learning
School Title School of AI and Advanced Computing
Assignment Title Assessment Task 1
Submission Deadline 23:59, 24th March (Sunday), 2024
(China Time, GMT + 8)
Final Word Count N/A
If you agree to let the university use your work anonymously for teaching and 
learning purposes, please type “yes” here.
I certify that I have read and understood the University’s Policy for dealing with Plagiarism, Collusion 
and the Fabrication of Data (available on Learning Mall Online). With reference to this policy I certify 
that:
? My work does not contain any instances of plagiarism and/or collusion.
My work does not contain any fabricated data.
By uploading my assignment onto Learning Mall Online, I formally declare that all of the 
above information is true to the best of my knowledge and belief.
Scoring – For Tutor Use
Student ID 
Stage of Marking Marker
Code
Learning Outcomes Achieved (F/P/M/D)
(please modify as appropriate)
Final 
Score
A B C
1
st Marker – red pen
Moderation
– green pen
IM
Initials
The original mark has been accepted by the moderator (please circle 
as appropriate):
Y / N
Data entry and score calculation have been checked by another tutor 
(please circle):
Y
2
nd Marker if 
needed – green pen
For Academic Office Use Possible Academic Infringement (please tick as appropriate)
Date 
Received
Days 
late
Late 
Penalty
? Category A
Total Academic Infringement Penalty (A,B, 
C, D, E, Please modify where necessary) 
_____________________ 
? Category B
? Category C
? Category D
? Category E
DTS304TC Machine Learning
Coursework – Assessment Task 1
Submission deadline: TBD
Percentage in final mark: 50%
Learning outcomes assessed: 
A. Demonstrate a solid understanding of the theoretical issues related to problems that machine learning 
algorithms try to address.
B. Demonstrate understanding of properties of existing ML algorithms and new ones.
C. Apply ML algorithms for specific problems.
Individual/Group: Individual
Length: The assessment has a total of 4 questions which gives 100 marks. The submitted file must be in 
pdf format.
Late policy: 5% of the total marks available for the assessment shall be deducted from the assessment 
mark for each working day after the submission date, up to a maximum of five working days
Risks:
? Please read the coursework instructions and requirements carefully. Not following these instructions 
and requirements may result in loss of marks.
? The formal procedure for submitting coursework at XJTLU is strictly followed. Submission link on
Learning Mall will be provided in due course. The submission timestamp on Learning Mall will be 
used to check late submission.
__________________________________________________________________
Question 1: Coding Exercise - Heart Disease Classification with Machine Learning (50 Marks)
In this coding assessment, you are presented with the challenge of analyzing a dataset that contains 
patient demographics and health indicators to predict heart disease classifications. This entails solving a 
multi-class classification problem with five distinct categories, incorporating both categorical and 
numerical attributes.
Your initial task is to demonstrate proficiency in encoding categorical features and imputing missing 
values to prepare the dataset for training a basic classifier. Beyond these foundational techniques, you are 
invited to showcase your advanced skills. This may include hyperparameter tuning using sophisticated 
algorithms like the Asynchronous Successive Halving Algorithm (ASHA). You are also encouraged to 
implement strategies for outlier detection and handling, model ensembling, and addressing class 
imbalance to enhance your model's performance.
Moreover, an external test set without ground truth labels has been provided. Your classifier's 
performance will be evaluated based on this set, underscoring the importance of building a model with 
strong generalization capabilities.
The competencies you develop during this practical project are not only essential for successfully 
completing this assessment but are also highly valuable for your future pursuits in the field of data science.
Throughout this project, you are encouraged to utilize code that was covered during our Lab sessions, as 
well as other online resources for assistance. Please ensure that you provide proper citations and links to 
any external resources you employ in your work. However, the use of Generative AI for content 
generation (such as ChatGPT) is not permitted on all assessed coursework in this module.
Project Steps:
a) Feature Preprocessing (8 Marks)
 You are required to demonstrate four key preprocessing steps: loading the dataset, encoding 
categorical features, handling missing values, and dividing the dataset into training, validation, 
and test sets.
 It is crucial to consistently apply the same feature preprocessing steps—including encoding 
categorical features, handling missing values, and any other additional preprocessing or custom 
modifications you implement—across the training, validation, internal testing, and the externally 
provided testing datasets. For efficient processing, you may want to consider utilizing the 
sklearn.pipeline and sklearn.preprocessing library functions.
b) Training Classifiers (10 Marks)
 Train a logistic regression classifier with parameter tuned using grid search, and a random forest 
classifier with parameters tuned using Async Successive Halving Algorithm (ASHA) with 
ray[tune] libraries. You should optimize the model's AUC score during the hyperparameter tuning 
process.
 You should aim to optimize a composite score, which is the average of the classification accuracy 
and the macro-averaged F1 score. This objective encourages a balance between achieving high 
accuracy overall and ensuring that the classifier performs well across all classes in a balanced 
manner, which is especially important in multi-class classification scenarios where class 
imbalance might be a concern.
To clarify, your optimization goal is to maximize a composite accuracy metric defined as follows:
accuracy = 0.5 * (f1_score(gt, pred, average='macro') + accuracy_score(gt, pred))
In this formula, f1_score and accuracy_score refer to functions provided by the scikit-learn 
library, with f1_score being calculated with the 'macro' average to treat all classes equally.
 Ensure that you perform model adjustments, including hyperparameter tuning, on the validation 
set rather than the testing set to promote the best generalization of your model.
 We have included an illustrative example of how to implement the ASHA using the ray[tune] 
library. Please refer to the notebook DTS304TC_ASHA_with_Ray_Tune_Example.ipynb located 
in our project data folder for details.
c) Additional Tweaking and External Test Set Benchmark (19 Marks)
 You are encouraged to explore a variety of advanced techniques to improve your model's 
predictive power. 
1. Utilizing different classifiers, for example, XGBoost.
2. Implementing methods for outlier detection and treatment.
3. Creating model ensembles with varied validation splits.
4. Addressing issues of class imbalance.
5. Applying feature engineering strategies, such as creating composite attributes.
6. Implementing alternative validation splitting strategies, like cross-validation or stratified 
sampling, to enhance model tuning.
7. Additional innovative and valid methods not previously discussed.
You will be awarded 3 marks for successfully applying any one of these methods. Should you 
incorporate two or more of the aforementioned techniques, a total of 6 marks will be awarded.
Please include code comments that explain how you have implemented these additional 
techniques. Your code and accompanying commentary should explicitly state the rationale behind 
the selection of these supplementary strategies, as well as the underlying principles guiding your 
implementation. Moreover, it should detail any changes in performance, including improvements, 
if any, resulting from the application of these strategies. An additional 4 marks will be awarded 
for a clear and comprehensive explanation. To facilitate a streamlined review and grading 
process, please ensure that your comments and relevant code are placed within a separate code 
block in your Jupyter notebook, in a manner that is readily accessible for our evaluation.
 Additionally, utilize the entire dataset and the previously determined optimal hyperparameters
and classification pipeline to retrain your top-performing classifier. Then, apply this model to the 
features in 'dts304tc_a1_heart_disease_dataset_external_test.csv', which lacks true labels, to 
produce a set of predictive probability scores. Save these probabilistic scores in a table with two 
columns: the first column for patient IDs and the second for the output classification labels. 
Export this table to a file named external_test_results_[your_student_id].csv. Submit this file for 
evaluation. In the external evaluation conducted by us, your scores will be benchmarked against 
the performance of models developed by your classmates. You will receive four marks for 
successfully completing the prescribed classifier retraining and submission process. Additionally, 
your classifier's benchmark ranking—based on its performance relative to models developed by 
your peers—will be assigned five marks, contingent upon your standing in the ranking.
d) Result Analysis (8 Marks)
 For your best-performing model, compute critical performance metrics such as precision, recall, 
specificity, and the F1 score for each class. Additionally, generate the confusion matrix based on 
your internal test set. Ensure that the code for calculating these performance metrics, as well as 
the resulting statistics, are clearly displayed within your Jupyter notebook. For ease of review, 
position these elements towards the end of your notebook to provide direct access to your 
outcomes.
 Conduct a feature importance analysis by utilizing the feature importance scoring capabilities 
provided by your chosen classifier. What are the top three most important features for classifying 
this medicial condition? If your best performing model does not offer feature importance scoring, 
you may utilize an alternative model for this analysis. Present the results of the feature 
importance analysis within your Jupyter notebook using print statements or code comments. 
Place these relevant code and findings towards the end of the notebook to facilitate easy review of 
your results.
e) Project Submission Instructions (5 Marks - Important, Please Read!)
 Submit your Jupyter notebook in both .ipynb and .PDF formats. Ensure that in the PDF version, 
all model execution results, as well as your code annotations and analyses, are clearly visible. It is 
critical to maintain a well-organized structure in your Jupyter notebook, complemented by clear 
commentary using clean code practices. Your submission's readability and navigability are 
crucial; we cannot assign a score if we cannot understand or locate your code and results. You 
will receive 5 points for clarity in code structure and quality of code comments.
To maintain the readability of your code when converting your Jupyter notebook to a PDF, ensure 
that no single line of code extends beyond the printable page margin, thus preventing line 
truncation. If necessary, utilize line continuation characters or implicit line continuation within 
parentheses, brackets, or braces in Python to break up longer lines of code. After converting to 
PDF, thoroughly review the document to confirm that all code is displayed completely and that 
no line truncation has occurred.
If you have written supplementary code that is not contained within the Jupyter notebook, you 
must submit that as well to guarantee that your Jupyter notebook functions correctly. 
Nevertheless, our primary basis for grading will be the PDF version of your Jupyter notebook. 
Please ensure that all necessary code is included so that the notebook can be executed seamlessly,
and your results are reproducible.
 Submit the results of your external test as a file named external_test_[your_student_id].csv. This 
CSV file must be correctly formatted: the first column must contain patient IDs, and the second 
column must list your predicted classification labels. Any deviation from this format may result 
in the file being unprocessable by our grading software, and therefore unable to be scored.
Project Material Access Instructions
To obtain the complete set of materials for our project, including the dataset, code, and Jupyter notebook 
files, please use the links provided below:
 (OneDrive Link): https://1drv.ms/u/s!AoRfWDkanfAYnvcrXTKMGhNzRztf0g?e=JDwmbR
 (Baidu Drive Link): https://pan.baidu.com/s/1AXSRYO6ujTu1iNspdkIuUA?pwd=h4js
Download password: h4js
When prompted, use the following password to unlock the zip file: DTS304TC (please note that it is case?sensitive and should be entered in all capital letters).
Additionally, for ease of reference, the project's Jupyter notebooks have been appended to the end of this 
document.
Please note that the primary library dependencies for this project include pandas, scikit-learn, xgboost, 
and the ray library with the tune module enabled (ray[tune]).
Question 2: Ensemble Learning (18 marks):
Students are required not to use AI models, such as ChatGPT, for assistance with this question. 
You should give clear calculation steps and explain the relevant concepts using your own words.
(a) Majority Voting with Independent Classifiers (8 Marks)
1. Given individual classifiers C1, C2, and C3 with statistically independent error rates of 40%, 35%, 
and 35% respectively, calculate the accuracy of the majority voting ensemble composed of classifiers 
C1, C2, and C3. Provide the steps you use to determine the ensemble's accuracy, assuming the 
classifiers' decisions are statistically independent. (5 Marks)
(Hints: Calculate the ensemble 's accuracy by summing the probability that all classifiers are correct with 
the probabilities of exactly two classifiers being correct while the third is incorrect)
2. Point out the similarities and differences between the majority voting ensemble method and Random 
Forest, emphasizing the strategies employed by Random Forest to attain higher accuracy. (3 Marks)
(b) AdaBoost Algorithm (10 Marks)
Consider the process of creating an ensemble of decision stumps, referred to as ????, through the standard 
AdaBoost method.
The diagram above shows several two-dimensional labeled points along with the initial decision stump 
we've chosen. This stump gives out binary values and makes its decisions based on a single variable (the 
cut-off). In the diagram, there's a tiny arrow perpendicular to the classifier's boundary that shows where 
the classifier predicts a +1. Initially, every point has the same weight.
1. Identify all the points in the above diagram that will have their weights increased after adding the 
initial decision stump (adjustments to AdaBoost sample weights after the initial stump is used) (2 
marks)
2. On the same diagram, draw another decision stump that could be considered in the next round of 
boosting. Include the boundary where it makes its decision and indicate which side will result in a +1 
prediction. (2 marks)
3. Will the second basic classifier likely get a larger importance score in the group compared to the first 
one? To put it another way, will ??2 > ??1? Just a short explanation is needed (Calculations are not 
required). (3 marks)
4. Suppose you have trained two models on the same set of data: one with AdaBoost and another with a 
Random Forest approach. The AdaBoost model does better on the training data than the Random 
Forest model. However, when tested on new, unseen data, the Random Forest model performs better. 
What could explain this difference in performance? What can be done to make the AdaBoost model 
perform better? (3 marks)
Question 3: K-Means and GMM Clustering (7 marks)
Students are required not to use AI models, such as ChatGPT, for assistance with this question. 
You should give clear analysis steps and explain the relevant concepts using your own words.
1. Reflect on the provided data for training and analyze the outcomes of K-Means and GMM techniques. 
Can we anticipate identical centroids from these clustering methods? Please state your reasoning. (3
marks)
2. Determine which of the given cluster assignments could be a result of applying K-means clustering, 
and which could originate from GMM clustering, providing an explanation for your reasoning. (4 
marks)
Question 4 - Reinforcement Learning (25 marks)
Students are required not to use AI models, such as ChatGPT, for assistance with this question. 
You should give clear analysis steps and explain the relevant concepts using your own words.
1. Describe the five key components of reinforcement learning using the graph below, explain each of 
the components and their relationships. (10 marks.)
import gym
import numpy as np
env = gym.make('CartPole-v1')
state_space_size = env.observation_space.shape[0]
action_space_size = env.action_space.n
q_table = np.zeros((state_space_size, action_space_size))
learning_rate = 0.1
discount_factor = 0.99
epsilon = 0.1
num_episodes = 1000
# Q-learning algorithm
for episode in range(num_episodes):
 state = env.reset()
 done = False
 while not done:
 # Exploration-exploitation strategy
 if np.random.uniform(0, 1) < epsilon:
 action = env.action_space.sample() # Explore
 else:
 action = np.argmax(q_table[state, :]) # Exploit
 # Take action and observe the next state and reward
 next_state, reward, done, _ = env.step(action)
 # Update Q-value using the Q-learning formula
 q_table[state, action] = (1 - learning_rate) * q_table[state, action] +
 learning_rate * (reward + discount_factor * np.max(q_table[next_state, :]))
 # Move to the next state
 state = next_state
# Testing the learned policy
total_reward = 0
state = env.reset()
while True:
 action = np.argmax(q_table[state, :])
 state, reward, done, _ = env.step(action)
 total_reward += reward
 if done:
 break
print(f"Total reward: {total_reward}")
2. The questions below refer to the above code example:
a) What is the significance of the exploration-exploitation strategy in reinforcement learning, and how is 
it implemented in the code? (5 marks)
b) How would you change this code to use deep learning? You don’t need to write the code, only 
describe the major changes you would make and explain the advantage of deep learning approaches 
over the Q-table. (5 marks)
c) Describe the current reward function for Cartpole. Design a reward function of your own and explain 
your reward function. (5 marks)

.ip… 1/2
# to student: this is an code snapshot showing how to use ray tune framework to 
# you are responsible for completing the code, debugging and making sure it work
import sklearn.datasets
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from sklearn import metrics
import os
from ray.tune.schedulers import ASHAScheduler
from sklearn.model_selection import train_test_split
from ray import tune
from ray import train
def train_rf(config: dict, data=None):
 # Initialize the RandomForestClassifier with the configuration
 classifier = RandomForestClassifier(
 n_estimators=config["n_estimators"],
 max_depth=config["max_depth"],
 min_samples_split=config["min_samples_split"],
 min_samples_leaf=config["min_samples_leaf"],
 class_weight="balanced",
 random_state=42
 )
 
 # Fit the RandomForestClassifier on the training data
 X_train = data[0]
 y_train = data[1]
 X_validation = data[2]
 y_validation = data[3]
 # To Be filled: Train your Random Forest Classifier here
 # To Be filled: Evaluate the classifier on the validation set here and get e
 
 # Send the accuracy to Ray Tune
 train.report({'accuracy': accuracy})
# note that X_train, y_train, X_validation, y_validation are your training and v
tunable_function = tune.with_parameters(train_rf, data=[X_train, y_train, X_vali
def tune_random_forest(smoke_test=False):
 # Define the search space for hyperparameters
 search_space = {
 "n_estimators": # setup your search space here
 "max_depth": # setup your search space here
 "min_samples_split": # setup your search space here
 "min_samples_leaf": # setup your search space here
 }
 
 # Define the scheduler for early stopping
 scheduler = ASHAScheduler(
 max_t= # setup your ASHA parameter here,
 grace_period=# setup your ASHA parameter here,
 reduction_factor=# setup your ASHA parameter here
 )
 
 # Set up the tuner
 tuner = tune.Tuner(
 tunable_function,
In [ ]:

.ip… 2/2
 tune_config=tune.TuneConfig(
 metric="accuracy",
 mode="max",
 scheduler=scheduler,
 num_samples=1 if smoke_test else 200,
 ),
 param_space=search_space,
 )
 
 # Execute the tuning process
 results = tuner.fit()
 
 return results
# Run the tuning function
best_results = tune_random_forest(smoke_test=False)
best_trial = best_results.get_best_result(metric="accuracy", mode="max")
# Get the best trial's hyperparameters
best_params = best_trial.config
# Print the best hyperparameters
print("Best hyperparameters found were: ", best_params)
# Initialize a new RandomForestClassifier with the best hyperparameters
best_rf = RandomForestClassifier(**best_params, random_state=42)
# The remaining part of your code continues ....

請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 



 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:AcF633代做、Python設計編程代寫
  • 下一篇:SCC312代做、代寫Java編程語言
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线
  • <dl id="akume"></dl>
  • <noscript id="akume"><object id="akume"></object></noscript>
  • <nav id="akume"><dl id="akume"></dl></nav>
  • <rt id="akume"></rt>
    <dl id="akume"><acronym id="akume"></acronym></dl><dl id="akume"><xmp id="akume"></xmp></dl>
    亚洲国产精品影视| 日本人体一区二区| 免费国产成人av| av一区二区三区免费观看| 欧美国产亚洲一区| 欧美在线观看视频免费| 九九热免费在线观看| 亚洲精品无码久久久久久| 免费的av在线| 欧美一级黄色录像片| 成年人视频观看| 国产一线二线三线女| 色乱码一区二区三区熟女| 亚洲免费黄色录像| 精品久久久久久久无码| 男人用嘴添女人下身免费视频| 久久久久久久久久一区| 亚洲自偷自拍熟女另类| 美女扒开大腿让男人桶| 国产二区视频在线| 久久久久免费看黄a片app| 欧美少妇在线观看| 欧美日韩午夜爽爽| 国产青草视频在线观看| 拔插拔插海外华人免费| 日本人体一区二区| 少妇人妻大乳在线视频| 国产视频一视频二| 亚洲熟妇av一区二区三区| 蜜臀av无码一区二区三区| 国产特级黄色大片| 免费高清在线观看免费| 成人亚洲视频在线观看| www.日本一区| 国产免费中文字幕| 成人短视频在线看| 被灌满精子的波多野结衣| 免费在线观看亚洲视频| 午夜dv内射一区二区| 国产成人美女视频| 黄色网在线视频| 日本毛片在线免费观看| 亚洲性生活网站| 欧美爱爱视频网站| 免费在线观看视频a| 免费裸体美女网站| 亚洲欧美aaa| 欧美日韩午夜爽爽| 国产中文字幕二区| 女人高潮一级片| 国产真实老熟女无套内射| 成人在线观看黄| 男女视频在线观看网站| 国产美女网站在线观看| www.99在线| 毛片在线视频观看| 冲田杏梨av在线| wwwwww欧美| 手机视频在线观看| 野外做受又硬又粗又大视频√| 欧美精品成人网| 日本久久高清视频| 我看黄色一级片| 黄色大片中文字幕| 一区二区三区四区久久| 男女av免费观看| 成人在线观看毛片| 亚洲另类第一页| 免费成人在线视频网站| 日本在线视频www色| 日韩av手机版| 亚洲中文字幕无码中文字| 精品久久免费观看| 妓院一钑片免看黄大片| 人妻av无码专区| 奇米777在线视频| 污视频免费在线观看网站| 成人一对一视频| 黄网站色视频免费观看| 第一区免费在线观看| 久久国产色av免费观看| 777av视频| 久久99久久久久久| 成人高清dvd| 黄网站欧美内射| 五月天男人天堂| 日韩欧美国产片| 我要看一级黄色大片| 国语对白做受xxxxx在线中国| 成人免费毛片在线观看| 免费的av在线| 黄色小视频大全| 看一级黄色录像| 亚洲一二区在线观看| 老司机久久精品| 青青草久久伊人| 粉色视频免费看| 日韩成人精品视频在线观看| 欧美日韩亚洲一二三| 国产一区视频免费观看| 日本熟妇人妻xxxxx| 六月激情综合网| 欧美一级黄色片视频| 久久久久久久久久久福利| 欧美 日本 亚洲| 1024av视频| av片中文字幕| 男人插女人下面免费视频| 美女黄色片视频| 亚洲天堂2018av| 久久精品一卡二卡| 国产人妻人伦精品| 免费看国产曰批40分钟| 黑鬼大战白妞高潮喷白浆| 91蝌蚪视频在线观看| 一级片视频免费观看| 亚洲最大天堂网| 久久99国产精品一区| 丁香六月激情婷婷| 免费在线观看的av网站| 美女一区二区三区视频| 亚洲黄色片免费| 一本大道东京热无码aⅴ| 奇米精品一区二区三区| 91香蕉视频导航| 中文字幕超清在线免费观看| 91黄色在线看| 国产一区二区三区精彩视频| 777视频在线| www.亚洲成人网| 97成人在线观看视频| 中日韩av在线播放| 人人妻人人澡人人爽欧美一区双 | 给我免费播放片在线观看| 国产亚洲天堂网| 国产成人强伦免费视频网站| www.在线观看av| 污视频网站观看| www插插插无码视频网站| 成人性生生活性生交12| 国产一级片91| 午夜国产一区二区三区| 九九热只有这里有精品| 久久这里只精品| www.日本在线播放| 一个色综合久久| 欧美日韩精品在线一区二区| www.五月天色| 国产午夜福利视频在线观看| 97人人模人人爽人人澡| 国产日韩一区二区在线观看| 女人床在线观看| 亚洲精品手机在线观看| 精品中文字幕av| 久久这里只有精品8| 鲁一鲁一鲁一鲁一av| www国产黄色| 日韩欧美猛交xxxxx无码| 日本中文字幕高清| 精品国产免费av| 福利在线一区二区| 国产精品igao网网址不卡| 国产精品wwwww| 国产精品又粗又长| 日产精品久久久久久久蜜臀| 亚洲一区二区福利视频| 热久久精品免费视频| 国产午夜伦鲁鲁| 国产96在线 | 亚洲| 日本一本中文字幕| 日本一级黄视频| www.激情网| 国产精品88久久久久久妇女| 婷婷中文字幕在线观看| 欧美美女一级片| 日韩av片专区| 伊人成人222| 欧美又黄又嫩大片a级| 亚洲另类第一页| 亚洲欧美日本一区二区| 欧美日韩精品区别| 亚洲天堂网站在线| 亚洲欧美一区二区三区不卡| 亚洲精品成人在线播放| 天堂av.com| 四虎永久免费网站| 免费cad大片在线观看| 成人毛片100部免费看| 国产91在线亚洲| 欧美视频在线观看网站| 亚洲美免无码中文字幕在线| 国产96在线 | 亚洲| 日韩免费一级视频| 日韩手机在线观看视频| 男人女人黄一级| 亚洲一区二区三区四区五区| 天美一区二区三区| 免费在线黄网站| 内射国产内射夫妻免费频道| 欧美一区二区三区爽大粗免费|