狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线

COMP 315 代做、代寫 java 語言編程

時間:2024-03-10  來源:  作者: 我要糾錯



1 Introduction
Assignment 1: Javascript
COMP 315: Cloud Computing for E-Commerce March 5, 2024
A common task in cloud computing is data cleaning, which is the process of taking an initial data set that may contain erroneous or incomplete data, and removing or fixing those elements before formatting the data in a suitable manner. In this assignment, you will be tested on your knowledge of JavaScript by implementing a set of functions that perform data cleaning operations on a dataset.
2 Ob jectives
By the end of this assignment, you will:
• Gain proficiency in using JavaScript for data manipulation.
• Be able to implement various data cleaning procedures, and understand the significance of them. • Have developed problem-solving skills through practical application.
3 Problem description
For this task, you have been provided with a raw dataset of user information. You must carry out the following series of operations:
• Set up a Javascript class in the manner described in Section 4.
• Convert the data into the appropriate format, as highlighted in Section 5
• Fix erroneous values where possible e.g. age being a typed value instead of a number, age being a real number instead of an integer, etc; as specified in Section 6.
• Produce functions that carry out the queries specified in Section 7.
 Data name Title
First name
Middle name Surname Date of birth Age
Email
Note
This value may be either: Mr, Mrs, Miss, Ms, Dr, or left blank.
Each individual must have one. The first character is capitalised and the rest are lower case, with the exception of the first character after a hyphen.
This may be left blank.
Each individual must have one.
This must be in the format of DD/MM/YYYY.
All data were collected on 26/02/2024, and the age values should reflect this.
The format should be [first name].[surname]@example.com. If two individuals have the same address then an ID is added to differentiate them eg john.smith1, john.smith2, etc
Table 1: The attributes that should be stored for each user
         1

4 Initial setup
Create a Javascript file called Data Processing.js. Create a class within that file called Data Processing. Write a function within that class called load CSV that takes in the filename of a csv file as an input, eg load CSV (”User Details”). The resulting data should be saved locally within the class as a global variable called raw user data. Write a function called format data, which will have no variables are a parameter. The functionality of this method is described in Section 5. Write a function called clean data, which will also have no parameters. The functionality of this method is similarly described in Section 6.
5 Format data
Within the function format data, the data stored within raw user data should be processed and output to a global variable called formatted user data. The data are initially provided in the CSV format, with the delimiter being the ’,’ character. The first column of the data is the title and full name of the user. The second and third columns are the date of birth, and age of the user, respectively. Finally, the fourth column is the email of the user. Ensure that the dataset is converted into the appropriate format, outlined in Table 1. This data should be saved in the JSON format (you may use any built in JavaScript method for this). The key for each of the values should be names shown in the ’Data name’ column, however converted to lower case with an underscore instead of a space character eg ’first name’.
6 Data cleaning
Within the function clean data, the data cleaning tasks should be carried out, loading the data stored in formatted user data. All of this code may be written within the clean data function, or may be handled by a series of functions that are called within this class. The latter option is generally considered better practice. Examine the data in order to determine which values are in the incorrect format or where values may be missing. If a value is in the incorrect format then it must be converted to be in the correct format. If a value is missing or incorrect, then an attempt should be made to fill in that data given the other values. The cleaned data should be saved into the global variable cleaned user data.
7 Queries
Often, once the data has been processed, we perform a series of data analysis tasks on the cleaned data. Each of these queries are outlined in Table 2. Write a function with the name given in the ’Function name’ column, that carries out the query given in the corresponding ’Query description’. The answer should be returned by the function, and not stored locally or globally.
 Function name
most common surname average age
youngest dr
most common month
Query description
What is the most common surname name?
What is the average age of the users, given the values stored in the ’age’ column? This should be a real number to 3 significant figures.
Return all of the information about the youngest individual in the dataset with the title Dr.
What is the most common month for individuals in the data set?
        percentage titles
 What percentage of the dataset has each of the titles? Return this in the form of an array, following the order specified in the ’Title’ row of Table 1. This should included the blank title, and the percentage should be rounded to the nearest integer using bankers rounding.
  percentage altered
 A number of values have been altered between formatted user data and cleaned user data. What percentage of values have been altered? This should be a real number to 3 significant figures.
  Table 2: The queries that should be carried out on the cleaned data
2

8 Marking
The marking will be carried out automatically using the CodeGrade marking platform. A series of unit tests will be ran, and the mark will correspond with how many of those unit tests were successfully executed. Your work will be submitted to an automatic plagiarism/collusion detection system, and those exceeding a threshold will be reported to the Academic Integrity Officer for investigation regarding adhesion to the university’s policy https://www.liverpool.ac.uk/media/livacuk/tqsd/code-of-practice-on-assessment/appendix L cop assess.pdf.
9 Deadline
The deadline is 23:59 GMT Friday the 22nd of March 2024. Late submissions will have the typical 5% penalty applied for each day late, up to 5 days. Submissions after this time will not be marked. https: //www.liverpool.ac.uk/aqsd/academic-codes-of-practice/code-of-practice-on-assessment/
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫 CSSE7030 Connect 4
  • 下一篇:代做ACS61012、代寫ACS61012 Machine Vision
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线
  • <dl id="akume"></dl>
  • <noscript id="akume"><object id="akume"></object></noscript>
  • <nav id="akume"><dl id="akume"></dl></nav>
  • <rt id="akume"></rt>
    <dl id="akume"><acronym id="akume"></acronym></dl><dl id="akume"><xmp id="akume"></xmp></dl>
    国产69精品久久久久久久| 波多野结衣国产精品| 深夜做爰性大片蜜桃| 黄色在线视频网| 国产真人无码作爱视频免费| 欧美日韩激情视频在线观看| 青青草精品视频在线| 国产曰肥老太婆无遮挡| 国产精品国产对白熟妇| 2019日韩中文字幕mv| 国产成人无码a区在线观看视频| www成人免费| 向日葵污视频在线观看| 一级特黄性色生活片| 91精品无人成人www| 日韩大片一区二区| 强伦女教师2:伦理在线观看| 日韩视频一二三| 欧美日韩成人免费视频| 欧美丰满熟妇xxxxx| www.精品在线| 99久久久精品视频| 国内性生活视频| jizz大全欧美jizzcom| 91看片淫黄大片91| 午夜精品久久久内射近拍高清| 无人在线观看的免费高清视频 | 男女私大尺度视频| 国产96在线 | 亚洲| 国产一级片91| 最新天堂中文在线| 国产资源在线免费观看| 日韩一级特黄毛片| 99久热在线精品视频| 欧美国产在线一区| 色噜噜狠狠永久免费| 五月天婷婷在线观看视频| 日本福利视频导航| 看一级黄色录像| 男人揉女人奶房视频60分| 最新天堂中文在线| 亚洲视频一二三四| 午夜免费高清视频| 免费av手机在线观看| 国产成人无码一二三区视频| 国产免费中文字幕| 免费观看中文字幕| 男人舔女人下面高潮视频| 国产在线视频在线| 日韩av综合在线观看| 国产xxxxhd| 日本a级片在线观看| 日韩精品在线中文字幕| 成年人观看网站| 亚洲精品视频三区| 337p粉嫩大胆噜噜噜鲁| 日韩一级片播放| 午夜肉伦伦影院| 国产精品99久久久久久大便| 国产毛片视频网站| 波多野结衣 作品| 五月天开心婷婷| 免费涩涩18网站入口| 无人在线观看的免费高清视频| 免费看日本黄色| 欧美大黑帍在线播放| 天天综合天天添夜夜添狠狠添| 99视频免费播放| 成人午夜视频免费在线观看| 成年人免费在线播放| 精品99在线视频| 少妇高潮喷水久久久久久久久久| 欧美大片在线播放| 人妻熟妇乱又伦精品视频| 欧美日韩精品在线一区二区| 每日在线更新av| 欧美亚洲日本在线观看| 狠狠躁狠狠躁视频专区| 欧美一级视频在线| 99亚洲精品视频| 无码av天堂一区二区三区| 日日碰狠狠添天天爽超碰97| 久久精品99国产| 一区二区三区 日韩| 国产精品久久久久久久99| 91精品一区二区三区四区| 久草视频国产在线| 人人干人人视频| 欧美少妇一级片| 拔插拔插海外华人免费| 白嫩少妇丰满一区二区| 深爱五月综合网| 人妻熟妇乱又伦精品视频| 男人搞女人网站| 亚洲精品天堂成人片av在线播放 | 视频二区在线播放| 日本国产中文字幕| 亚洲精品怡红院| 国产黄色激情视频| 中文字幕第21页| 国产 国语对白 露脸| 韩国中文字幕av| 成人黄色大片网站| 天天干天天色天天干| 1024av视频| 男女激烈动态图| 成人免费在线观看视频网站| 99热久久这里只有精品| 天堂中文av在线| 欧美黄色免费影院| 日本精品福利视频| 在线播放av中文字幕| 久久美女福利视频| 欧美一区二区视频在线播放| 尤物国产在线观看| caoporn超碰97| 欧美综合在线播放| 国产爆乳无码一区二区麻豆| 国产精品v日韩精品v在线观看| 国产精品久久..4399| 成人短视频在线看| 999久久久精品视频| 欧美男女交配视频| 丰满少妇在线观看| 中文 日韩 欧美| 日本中文字幕精品—区二区| 黄色片一级视频| aⅴ在线免费观看| 凹凸日日摸日日碰夜夜爽1| 可以在线看的av网站| 日韩 欧美 视频| 国产午夜大地久久| av7777777| 粗暴91大变态调教| 四季av一区二区| www.久久91| 深夜做爰性大片蜜桃| 日韩不卡的av| 国产三级中文字幕| 91精品国产毛片武则天| 中文字幕乱码免费| 日韩精品一区在线视频| 日本aa在线观看| 欧美变态另类刺激| 538在线视频观看| 999热精品视频| 白白操在线视频| 国产中文字幕视频在线观看| 六月激情综合网| 日本77777| 久久av高潮av| 久久久久国产精品熟女影院| 欧美午夜aaaaaa免费视频| 在线播放黄色av| 无码av天堂一区二区三区| 国产真实乱子伦| 成人手机视频在线| 91免费黄视频| 五月激情五月婷婷| 人妻av中文系列| 午夜精品免费看| 欧美日韩黄色一级片| 日本在线一二三区| 久草热视频在线观看| 精品综合久久久久| 免费在线观看亚洲视频| 在线观看中文av| 久久久999免费视频| 黄色片免费网址| 少妇性l交大片| 亚洲一区二区三区av无码| 亚洲一区日韩精品| 霍思燕三级露全乳照| 亚洲美女性囗交| 成人av一级片| 香港三级日本三级a视频| 五月婷婷六月丁香激情| 精品视频免费在线播放| 欧美一级免费在线观看| 五月天av在线播放| 欧美牲交a欧美牲交aⅴ免费真| 91精品国产吴梦梦| 午夜啪啪小视频| xxx国产在线观看| 国产精品99久久免费黑人人妻| 日韩激情视频一区二区| 亚洲综合激情视频| 中文字幕一区二区三区四区在线视频| 无码人妻精品一区二区三区99v| 一区二区三区网址| 另类小说色综合| 中文字幕第80页| 91香蕉视频导航| 国产一级片自拍| 红桃视频 国产| 天天av天天操| 小说区视频区图片区| 日韩成人精品视频在线观看| 欧美日韩中文不卡| 色www免费视频|