狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线

代做Lab 2: Time Series Prediction with GP

時間:2024-03-21  來源:  作者: 我要糾錯



Evolutionary Computation 2023/2024
Lab 2: Time Series Prediction with GP
Released: February 26, 2024
Deadline: March 18, 2024
Weight: 25 %
You need to implement one program that solves Exercises 1-3 using any programming language.
In Exercise 5, you will run a set of experiments and describe the result using plots and a short
discussion.
(In the following, replace abc123 with your username.) You need to submit one zip file
with the name ec2024-lab2-abc123.zip. The zip file should contain one directory named
ec2024-lab2-abc123 containing the following files:
• the source code for your program
• a Dockerfile (see the appendix for instructions)
• a PDF file for Exercises 4 and 5
In this lab, we will do a simple form of time series prediction. We assume that we are given some
historical data, (e.g. bitcoin prices for each day over a year), and need to predict the next value in
the time series (e.g., tomorrow’s bitcoin value).
1
We formulate the problem as a regression problem. The training data consists of a set of m
input vectors X = (x
(0), . . . , x(m−1)) representing historical data, and a set of m output values
Y = (x
(0), . . . , x(m−1)), where for each 0 ≤ j ≤ m − 1, x
(j) ∈ R
n and y
(j) ∈ R. We will use genetic
programming to evolve a prediction model f : R
n → R, such that f(x
(j)
) ≈ y
(j)
.
Candidate solutions, i.e. programs, will be represented as expressions, where each expression evaluates to a value, which is considered the output of the program. When evaluating an expression,
we assume that we are given a current input vector x = (x0, . . . , xn−1) ∈ R
n. Expressions and evaluations are defined recursively. Any floating number is an expression which evaluates to the value
of the number. If e1, e2, e3, and e4 are expressions which evaluate to v1, v2, v3 and v4 respectively,
then the following are also expressions
• (add e1 e2) is addition which evaluates to v1 + v2, e.g. (add 1 2)≡ 3
• (sub e1 e2) is subtraction which evaluates to v1 − v2, e.g. (sub 2 1)≡ 1
• (mul e1 e2) is multiplication which evaluates to v1v2, e.g. (mul 2 1)≡ 2
• (div e1 e2) is division which evaluates to v1/v2 if v2 ̸= 0 and 0 otherwise, e.g., (div 4 2)≡ 2,
and (div 4 0)≡ 0,
• (pow e1 e2) is power which evaluates to v
v2
1
, e.g., (pow 2 3)≡ 8
• (sqrt e1) is the square root which evaluates to √
v1, e.g.(sqrt 4)≡ 2
• (log e1) is the logarithm base 2 which evaluates to log(v1), e.g. (log 8)≡ 3
• (exp e1) is the exponential function which evaluates to e
v1
, e.g. (exp 2)≡ e
2 ≈ 7.39
• (max e1 e2) is the maximum which evaluates to max(v1, v2), e.g., (max 1 2)≡ 2
• (ifleq e1 e2 e3 e4) is a branching statement which evaluates to v3 if v1 ≤ v2, otherwise the
expression evaluates to v4 e.g. (ifleq 1 2 3 4)≡ 3 and (ifleq 2 1 3 4)≡ 4
• (data e1) is the j-th element xj of the input, where j ≡ |⌊v1⌋| mod n.
• (diff e1 e2) is the difference xk − xℓ where k ≡ |⌊v1⌋| mod n and ℓ ≡ |⌊v2⌋| mod n
• (avg e1 e2) is the average 1
|k−ℓ|
Pmax(k,ℓ)−1
t=min(k,ℓ)
xt where k ≡ |⌊v1⌋| mod n and ℓ ≡ |⌊v2⌋|
mod n
In all cases where the mathematical value of an expression is undefined or not a real number (e.g.,

−1, 1/0 or (avg 1 1)), the expression should evaluate to 0.
We can build large expressions from the recursive definitions. For example, the expression
(add (mul 2 3) (log 4))
evaluates to
2 · 3 + log(4) = 6 + 2 = 8.
2
To evaluate the fitness of an expression e on a training data (X , Y) of size m, we use the mean
square error
f(e) = 1
m
mX−1
j=0

y
(j) − e(x
(j)
)
2
,
where e(x
(j)
) is the value of the expression e when evaluated on the input vector x
(j)
.
3
Exercise 1. (30 % of the marks)
Implement a routine to parse and evaluate expressions. You can assume that the input describes a
syntactically correct expression. Hint: Make use of a library for parsing s-expressions1
, and ensure
that you evaluate expressions exactly as specified on page 2.
Input arguments:
• -expr an expression
• -n the dimension of the input vector n
• -x the input vector
• -question the question number (always 1 in this case)
Output:
• the value of the expression
Example: In this example, we assume that your program has been compiled to an executable with
the name my lab solution.
[pkl@phi ocamlec]$ my_lab_solution -question 1 -n 1 -x "1.0"
-expr "(mul (add 1 2) (log 8))"
9.0
[pkl@phi ocamlec]$ my_lab_solution -question 1 -n 2 -x "1.0 2.0"
-expr "(max (data 0) (data 1))"
2.0
Exercise 2. (10 % of the marks) Implement a routine which computes the fitness of an expression
given a training data set.
Input arguments:
• -expr an expression
• -n the dimension of the input vector
• -m the size of the training data (X , Y)
• -data the name of a file containing the training data in the form of m lines, where each line
contains n + 1 values separated by tab characters. The first n elements in a line represents
an input vector x, and the last element in a line represents the output value y.
• -question the question number (always 2 in this case)
1See e.g. implementations here http://rosettacode.org/wiki/S-Expressions
4
Output:
• The fitness of the expression, given the data.
Exercise 3. (30 % of the marks)
Design a genetic programming algorithm to do time series forecasting. You can use any genetic
operators and selection mechanism you find suitable.
Input arguments:
• -lambda population size
• -n the dimension of the input vector
• -m the size of the training data (X , Y)
• -data the name of a file containing training data in the form of m lines, where each line
contains n + 1 values separated by tab characters. The first n elements in a line represents
an input vector x, and the last element in a line represents the output value y.
• -time budget the number of seconds to run the algorithm
• -question the question number (always 3 in this case)
Output:
• The fittest expression found within the time budget.
Exercise 4. (10 % of the marks) Here, you should do one of the following exercises.
If you follow LH Evolutionary Computation, do the following exercise: Describe your
algorithm from Exercise 3 in the form of pseudo-code. The pseudo-code should be sufficiently detailed
to allow an exact re-implementation.
If you follow LM Evolutionary Computation (extended), do the following exercise:
Describe in 150 words or less the result in one recent research paper on the topic “symbolic regression
using genetic programming”. The paper needs to be published in 2020 or later in the proceedings of
one of the following conferences: GECCO, PPSN, CEC, or FOGA.
5
Exercise 5. (20 % of the marks)
In this final task, you should try to determine parameter settings for your algorithm which lead to
as fit expressions as possible.
Your algorithm is likely to have several parameters, such as the population size, mutation rates,
selection mechanism, and other mechanisms components, such as diversity mechanisms.
Choose parameters which you think are essential for the behaviour of your algorithm. Run a set of
experiments to determine the impact of these parameters on the solution quality. For each parameter
setting, run 100 repetitions, and plot box plots of the fittest solution found within the time budget.
6
A. Docker Howto
Follow these steps exactly to build, test, save, and submit your Docker image. Please replace abc123
in the text below with your username.
1. Install Docker CE on your machine from the following website:
https://www.docker.com/community-edition
2. Copy the PDF file from Exercises 4 and 5 all required source files, and/or bytecode to an
empty directory named ec2024-lab2-abc123 (where you replace abc123 with your username).
mkdir ec2024 - lab2 - abc123
cd ec2024 - lab2 - abc123 /
cp ../ exercise . pdf .
cp ../ abc123 . py .
3. Create a text file Dockerfile file in the same directory, following the instructions below.
# Do not change the following line . It specifies the base image which
# will be downloaded when you build your image .
FROM pklehre / ec2024 - lab2
# Add all the files you need for your submission into the Docker image ,
# e . g . source code , Java bytecode , etc . In this example , we assume your
# program is the Python code in the file abc123 . py . For simplicity , we
# copy the file to the / bin directory in the Docker image . You can add
# multiple files if needed .
ADD abc123 . py / bin
# Install all the software required to run your code . The Docker image
# is derived from the Debian Linux distribution . You therefore need to
# use the apt - get package manager to install software . You can install
# e . g . java , python , ghc or whatever you need . You can also
# compile your code if needed .
# Note that Java and Python are already installed in the base image .
# RUN apt - get update
# RUN apt - get -y install python - numpy
# The final line specifies your username and how to start your program .
# Replace abc123 with your real username and python / bin / abc123 . py
# with what is required to start your program .
CMD [" - username " , " abc123 " , " - submission " , " python / bin / abc123 . py "]
7
4. Build the Docker image as shown below. The base image pklehre/ec2024-lab2 will be
downloaded from Docker Hub
docker build . -t ec2024 - lab2 - abc123
5. Run the docker image to test that your program starts. A battery of test cases will be executed
to check your solution.
docker run ec2024 - lab2 - abc123
6. Once you are happy with your solution, compress the directory containing the Dockerfile as
a zip-file. The directory should contain the source code, the Dockerfile, and the PDF file
for Exercise 4 and 5. The name of the zip-file should be ec2024-lab2-abc123.zip (again,
replace the abc123 with your username).
Following the example above, the directory structure contained in the zip file should be as
follows:
ec2024-lab2-abc123/exercise.pdf
ec2024-lab2-abc123/abc123.py
ec2024-lab2-abc123/Dockerfile
Submissions which do not adhere to this directory structure will be rejected!
7. Submit the zip file ec2024-lab2-abc123.zip on Canvas.
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫CSIE3310、代做c++/Python編程
  • 下一篇:AIST1110代做、Python編程設計代寫
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线
  • <dl id="akume"></dl>
  • <noscript id="akume"><object id="akume"></object></noscript>
  • <nav id="akume"><dl id="akume"></dl></nav>
  • <rt id="akume"></rt>
    <dl id="akume"><acronym id="akume"></acronym></dl><dl id="akume"><xmp id="akume"></xmp></dl>
    糖心vlog在线免费观看| 青青草免费在线视频观看| 天天操精品视频| 日韩日韩日韩日韩日韩| www.色偷偷.com| 精品丰满人妻无套内射| 999精彩视频| 国产免费黄色av| 日韩精品福利片午夜免费观看| 国产精品视频一区二区三区四区五区| 国产日本欧美在线| 日本999视频| 国产老熟妇精品观看| 精品亚洲视频在线| av免费中文字幕| 国产91沈先生在线播放| 亚洲欧美国产中文| 黑鬼大战白妞高潮喷白浆| 亚洲自拍偷拍一区二区三区| the porn av| 亚洲欧美激情网| 黑人糟蹋人妻hd中文字幕| www插插插无码免费视频网站| 亚洲欧美aaa| 欧美成年人视频在线观看| 午夜欧美福利视频| 一本久道中文无码字幕av| 人妻精品无码一区二区三区| 精品丰满人妻无套内射| www成人免费| 800av在线免费观看| 青青草视频国产| 91香蕉国产线在线观看| 国产九九在线观看| 日本不卡一区二区在线观看| 在线免费观看av的网站| 成人性生交免费看| 亚洲激情在线看| www.污网站| 久久精品国产精品亚洲精品色| 日本三级福利片| 女人被男人躁得好爽免费视频| 国产91在线亚洲| 男女私大尺度视频| 午夜精品久久久内射近拍高清 | 91麻豆天美传媒在线| 最新中文字幕久久| 日韩精品在线观看av| 国产97在线 | 亚洲| 国产精品欧美激情在线观看| 人妻内射一区二区在线视频 | 中文字幕第36页| 精品综合久久久久| 无码人妻精品一区二区三区99v| 一二三在线视频| 国产深夜男女无套内射| 奇米影视四色在线| av 日韩 人妻 黑人 综合 无码| 成人国产一区二区三区| 色综合久久久久无码专区| 男人添女人下面免费视频| 2022中文字幕| 亚洲成人av免费看| 日本特级黄色大片| 国产免费黄色av| 黄频视频在线观看| 可以在线看的黄色网址| 亚洲免费av网| 日韩有码免费视频| 久久久久久久久久久久久国产| 日韩精品视频久久| 欧美日韩一级在线| av网址在线观看免费| 日本一区二区三区四区五区六区| 可以在线看的黄色网址| 蜜臀精品一区二区| 最新国产黄色网址| 中文字幕日本最新乱码视频| 国产精品美女在线播放| xxxx一级片| 日本丰满少妇xxxx| 日韩不卡的av| 亚洲欧美日韩一级| 人妻少妇被粗大爽9797pw| 在线免费黄色小视频| 91视频免费版污| 日本一区二区黄色| 僵尸世界大战2 在线播放| 久久久久久综合网| 波多野结衣xxxx| 少妇性l交大片| 精品少妇一区二区三区在线| 国风产精品一区二区| 91在线第一页| 午夜激情av在线| 欧美三级理论片| 99视频在线免费| 国产黄视频在线| 欧美成人高潮一二区在线看| www.欧美黄色| 老太脱裤让老头玩ⅹxxxx| 国产日本欧美在线| 久久久久久久久久久久久国产| 欧美精品色视频| 黄色网zhan| 欧美日韩激情四射| 国产性xxxx18免费观看视频| 国产精欧美一区二区三区白种人| 日韩视频在线视频| 男女日批视频在线观看| 欧美 另类 交| 老司机午夜av| 色一情一区二区三区| 欧美成年人视频在线观看| 中文字幕av专区| 在线视频观看91| 18视频在线观看娇喘| 日本福利视频在线观看| 在线免费观看av网| 成人在线视频一区二区三区| 日韩精品在线中文字幕| 国产freexxxx性播放麻豆| 日本手机在线视频| 97在线播放视频| 中文字幕亚洲乱码| 色哟哟免费网站| 青青草原成人网| av免费一区二区| 国产小视频免费| 日本美女高潮视频| 蜜桃网站在线观看| xxxx18hd亚洲hd捆绑| 国产肥臀一区二区福利视频| 日本不卡一区二区在线观看| 日本人妻伦在线中文字幕| 中国丰满人妻videoshd| 五月天av在线播放| 国产精品69久久久| 超碰超碰在线观看| 国产免费一区二区视频| 亚洲欧美偷拍另类| 欧美日韩不卡在线视频| www.亚洲高清| 男女私大尺度视频| 黄色网址在线免费看| 成人亚洲视频在线观看| 欧美中文字幕在线观看视频| 538任你躁在线精品免费| 日本美女爱爱视频| 久久国产激情视频| 成人综合视频在线| www.日本在线视频| а 天堂 在线| 国产精品99久久免费黑人人妻| 亚洲免费在线播放视频| 少妇高清精品毛片在线视频| 青青在线视频免费观看| 极品粉嫩美女露脸啪啪| 国产女女做受ⅹxx高潮| 日韩精品在线观看av| www.亚洲一区二区| 国产欧美一区二| 爆乳熟妇一区二区三区霸乳| 极品粉嫩国产18尤物| 国产 国语对白 露脸| 99re8这里只有精品| 偷拍盗摄高潮叫床对白清晰| 一区二区免费av| 亚洲国产精品三区| 一区二区三区网址| 色一情一区二区三区| 五月天开心婷婷| 日韩av影视大全| 亚洲制服在线观看| 91香蕉国产线在线观看| 国产永久免费网站| 一级片黄色免费| 欧美专区第二页| 欧美 另类 交| 日韩激情视频一区二区| 日韩免费在线观看av| 17c丨国产丨精品视频| 97免费视频观看| 日韩av高清在线看片| 男人日女人下面视频| 国产免费毛卡片| 99视频在线免费| 亚洲图片 自拍偷拍| 国产激情片在线观看| 大伊香蕉精品视频在线| 18岁网站在线观看| 日韩中文字幕免费在线| 国产三级精品三级在线| 欧美激情亚洲天堂| 哪个网站能看毛片| 欧美丝袜在线观看| 免费人成在线观看视频播放| 六月丁香婷婷在线| 日韩精品在线播放视频| 69sex久久精品国产麻豆|