狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线

JC3509編程代做、代寫(xiě)Python程序設(shè)計(jì)

時(shí)間:2024-03-31  來(lái)源:  作者: 我要糾錯(cuò)



page 1 of 3
 University of Aberdeen
 South China Normal University
 Aberdeen Institute of Data Science
 & Artificial Intelligence.
 BSc in Artificial Intelligence 2023 – 2024
**Please read all the information below carefully**
Assessment I Briefing Document – Individually Assessed (no teamwork)
Course: JC3509 – Machine Learning Note: This part of assessment accounts for
30% of your total mark of the course.
Learning Outcomes
On successful completion of this component a student will have demonstrated competence in the
following areas:
• Ability to identify, prepare, & manage appropriate datasets for analysis.
• Ability to appropriately present the results of data analysis.
• Ability to analyse the results of data analyses, and to evaluate the performance of analytic
techniques in context.
• Knowledge and understanding of analytic techniques, and ability to appropriately apply
them in context, making correct judgements about how this needs to be done.
Information for Plagiarism and Conduct: Your submitted report may be submitted for
plagiarism check (e.g., Turnitin). Please refer to the slides available at MyAberdeen for more
information about avoiding plagiarism before you start working on the assessment. Please also read
the following information provided by the university: https://www.abdn.ac.uk/sls/onlineresources/avoiding-plagiarism/
In addition, please familiarise yourselves with the following document “code of practice on student
discipline (Academic)”: https://tinyurl.com/y92xgkq6
Report Guidance & Requirements
Your report must conform to the below structure and include the required content as outlined in each
section. Each subtask has its own marks allocated. You must supply a written report, along with the
corresponding code, containing all distinct sections/subtasks that provide a full critical and reflective
account of the processes undertaken.
Overview
This assignment tasks you to undertake the full machine learning pipeline, including data handling
and processing, model construction and training, and evaluation of the developed methods. You are
tasked to create a neural network to classify data into 3 categories.
page 2 of 3
**Please read all the information below carefully**
The dataset needed to fulfil the requirements of this assessment can be found in MyAberdeen.
Data:
This data contains the chemical properties of food product produced by 3 different manufacturers.
The purpose of this experiment is to explore the relationship between the chemical measures listed
below and the manufacturer of the food product. The data has 177 records, where the first column
“Producer” indicates which manufacturer produced the analyses sample. The features of the dataset
are the following:
• Producer – Manufacturer of the product (TARGET).
• Amino_acid – The total percentage content of animo acid.
• Malic_acid – The percentage content of malic acid.
• Ash – The measure of ash present in the product.
• Alc – The alcalinity of ash present.
• Mg – The measure of magnesium.
• Phenols – The total measure of phenols.
• Flavanoids – The measure of flavonoid phenols in the product.
• Nonflavanoid_phenols – The measure of non-flavonoid phenols in the product.
• Proanth – Proanthocyanins measure.
• Colo_int – The color intensity.
• Hue – Hue of the color.
• OD – The protein content of the product.
• Proline – The measure of proline amino acids.
Objectives:
The main purpose of employing this data is the following:
1. Classification: to determine the origin (manufacturer) of the product given analytical
measurements.
2. Analysis: to infer which analytical factors would potentially influence the classification of
the product.
In order to achieve these objectives, we would like to accomplish the following subtasks using
machine learning.
Submission
Please provide the follow:
1. A written report explaining the steps undertaken for each task, and the decisions behind each
choice. You are expected to use machine learning principles to explain your results with
graphs and/or tables.
2. A code submission, comprising of ONE commented python file with all code needed to
replicate the findings in the written report.
page 3 of 3
**Please read all the information below carefully**
Task 1 – Data Preparation (10 Marks)
Subtasks:
1. Import the dataset: Please provide a short description of the data provided and import the data
into your programming environment; provide snippets of code for these purposes.
2. Preprocess the data: If you did any preprocessing over the data, e.g., normalization, please
explain it and the reasons why you did that preprocessing; if you did not do any preprocessing,
also please explain.
Task 2 – Model Construction (50 Marks)
You are tasked to build simple fully connected artificial neural network from scratch to classify the
records into 3 categories (1, 2, or 3).
You are not permitted to use any machine learning or statistical libraries, you are expected to
construct the neural network from scratch, i.e. only using core Python and NumPy.
Subtasks:
1. Loss function: Select and implement an appropriate loss function, explain why you have
selected that loss function in relation to the data and the problem.
2. Network Design: Construct a fully connected neural network with at least one hidden layer.
Explain your architectural choice and demonstrate by code snippets, tests, and written
explanation that your code operates as expected. To achieve this, you will need to implement
both:
a. The Forward Pass.
b. The Backward Pass.
3. Gradient Descent: Update the weights by mini-batch stochastic gradient descent.
Demonstrate by code snippets, tests, and written explanation that the weights are being
updated. You can use advanced optimisation tricks if you wish i.e. momentum.
NOTE: If you are unable to complete the above tasks, you are permitted to use additional libraries
(i.e. PyTorch) however, this will result in a deduction of 20 marks.
Task 3 – Model Training (15 Marks)
Take the model from the previous task and train it on the data you pre-processed in Task 1. Ensure
that you train your model on a sub-set of the data, holding out a subset for validation.
Subtasks:
1. Model Training: Perform training and parameter selection on the training set.
2. Module Regularisation: Implement a regularisation method, briefly explain (Max 200 words)
how it works in the context of your code, use code snippets to help.
3. Model inference: Validate the model by performing inference on the held-out validation data.
page 4 of 3
**Please read all the information below carefully**
Task 4 – Evaluation (25 Marks)
Evaluate the performance of your trained classifier and employ machine learning principles to
explain your results with graphs and/or tables. In addition, perform some analyses on the trained
model to better understand which analytical factors would potentially influence the classification of
the product.
Subtasks:
1. Present Results: Present the results of your classifier via appropriate metrics for the problem
statement.
2. Plot: Plot the loss curve for training and validation, answer the following questions:
a. What does your loss curve tell you?
b. Are you observing any overfitting or underfitting?
c. Does the addition of regularisation help?
3. Explain Results: Explain the results from the previous subtasks in context of the problem
statement/setting.
Marking Criteria
• Depth and breadth of knowledge.
• Technical details of formalisation, implementation and pseudo-code.
• Communication skills (clear, technical contents and sound reasoning)
• Structure of document.
Submission Instructions
You should submit a PDF version of your report and the accompanying code to the Codio
environment. For the deadline of this assessment, please check it on MyAberdeen. The name of the
PDF file should have the form “JC3509_Assessment1 _< your Surname>_<your first
name>_<Your Student ID>”. For instance, “JC3509_Assessment1_Smith_John_4568985.pdf”,
where 4568985 is your student ID.
Any questions pertaining to any aspects of this assessment, please address them to the course
請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp








 

標(biāo)簽:

掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
  • 上一篇:CHC5223代寫(xiě)、Java/c++編程設(shè)計(jì)代做
  • 下一篇:代寫(xiě)CSci 4061、c/c++,Java程序代做
  • 無(wú)相關(guān)信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲(chóng)
    油炸竹蟲(chóng)
    酸筍煮魚(yú)(雞)
    酸筍煮魚(yú)(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚(yú)
    香茅草烤魚(yú)
    檸檬烤魚(yú)
    檸檬烤魚(yú)
    昆明西山國(guó)家級(jí)風(fēng)景名勝區(qū)
    昆明西山國(guó)家級(jí)風(fēng)景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗(yàn)證碼平臺(tái) 幣安官網(wǎng)下載 歐冠直播 WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线
  • <dl id="akume"></dl>
  • <noscript id="akume"><object id="akume"></object></noscript>
  • <nav id="akume"><dl id="akume"></dl></nav>
  • <rt id="akume"></rt>
    <dl id="akume"><acronym id="akume"></acronym></dl><dl id="akume"><xmp id="akume"></xmp></dl>
    午夜影院免费观看视频| 中文字幕在线视频一区二区三区| 激情五月婷婷基地| 欧美激情第一区| 在线观看三级网站| 男人天堂999| 日本一二区免费| 两根大肉大捧一进一出好爽视频| 欧美一级在线看| 天天操夜夜操很很操| 国产一区二区视频播放| 激情黄色小视频| 免费看国产曰批40分钟| 天天插天天操天天射| 最近免费观看高清韩国日本大全| xxxx18hd亚洲hd捆绑| 性生活免费在线观看| 国产一区二区三区小说| 中日韩av在线播放| 99精品视频播放| 国产av人人夜夜澡人人爽麻豆| 国产欧美在线一区| 久久久999视频| 久久精品无码中文字幕| 欧美 国产 精品| 国产在线拍揄自揄拍无码| 中文字幕12页| 免费在线精品视频| 国产精品igao激情视频| 一女被多男玩喷潮视频| 超碰在线免费观看97| 三级黄色片免费观看| 国产精品999.| 精品91一区二区三区| 无码毛片aaa在线| www.成年人视频| 熟妇人妻无乱码中文字幕真矢织江| 国产96在线 | 亚洲| 极品美女扒开粉嫩小泬| 免费成人在线视频网站| 一本久道中文无码字幕av| 爱爱爱爱免费视频| 男人添女人荫蒂免费视频| 妞干网在线免费视频| 不用播放器的免费av| 亚洲 自拍 另类小说综合图区| 性欧美18一19内谢| 天天影视综合色| 777av视频| 浮妇高潮喷白浆视频| 天天综合天天添夜夜添狠狠添| 日本成人在线免费视频| 99在线精品免费视频| 国产美女三级视频| av免费中文字幕| 91插插插插插插插插| www.av片| 国内av免费观看| 国产视频在线视频| 肉大捧一出免费观看网站在线播放| 久久这里只有精品8| 亚洲综合色在线观看| 国产一二三区在线播放| 91亚洲精品久久久蜜桃借种| 丰满少妇大力进入| 国产日韩一区二区在线| 欧美视频在线观看视频| 国产青草视频在线观看| 天天做天天爱天天高潮| 欧美少妇一区二区三区| 毛片毛片毛片毛片毛| 国产一级片中文字幕| 男女超爽视频免费播放| 国产女大学生av| 女人扒开屁股爽桶30分钟| 成人免费视频91| 狠狠爱免费视频| 看欧美ab黄色大片视频免费| www.日日操| 亚洲欧美视频二区| 99精品视频网站| 狠狠精品干练久久久无码中文字幕| 2021国产视频| 97国产在线播放| 欧美少妇一级片| 国产精品无码一区二区在线| 日韩精品免费播放| 免费观看中文字幕| 亚洲 高清 成人 动漫| 天堂一区在线观看| 国产一区二区三区乱码| 成人一区二区三| 久操手机在线视频| 污污视频在线免费| 妺妺窝人体色www在线小说| 涩涩网站在线看| 久久综合久久色| 精品视频免费在线播放| 男同互操gay射视频在线看| 老太脱裤子让老头玩xxxxx| 亚洲第一狼人区| 久草视频这里只有精品| 国产又粗又猛大又黄又爽| 国产一区二区网| 伊人成色综合网| 欧美成人一区二区在线观看| www国产免费| 男女爱爱视频网站| www.久久com| 男女h黄动漫啪啪无遮挡软件| 亚洲这里只有精品| 午夜免费福利小电影| 999久久久精品视频| 欧美国产日韩在线视频| 国产在线无码精品| 熟女少妇在线视频播放| 手机在线看福利| 天天操狠狠操夜夜操| 国产精品igao激情视频| 狠狠精品干练久久久无码中文字幕| 久久av喷吹av高潮av| 性欧美大战久久久久久久| 国产一二三四在线视频| 99精品一区二区三区的区别| 国产二级片在线观看| 中国黄色片一级| 亚洲熟妇av一区二区三区漫画| 欧美伦理片在线观看| 欧美女人性生活视频| 日韩人妻精品无码一区二区三区| 91免费黄视频| 91蝌蚪视频在线观看| 伊人色在线视频| 大陆极品少妇内射aaaaa| 男女激情免费视频| 亚洲 欧美 日韩 国产综合 在线| 天天干天天色天天干| 特级西西444| 三日本三级少妇三级99| 欧美黄色一级片视频| 青青在线免费视频| 中文字幕在线观看日| 国模无码视频一区二区三区| 99热都是精品| 欧美高清中文字幕| 香蕉视频xxxx| 免费黄频在线观看| 欧美日韩福利在线| 国产免费一区二区视频| 久久久久久久久久伊人| 99re8这里只有精品| 国产av熟女一区二区三区| 老太脱裤子让老头玩xxxxx| a级黄色小视频| av片在线免费| 久久美女福利视频| 韩国一区二区在线播放| 亚洲综合123| 久在线观看视频| 日韩大片一区二区| 天天操,天天操| 青青草原网站在线观看| 国产精品国产亚洲精品看不卡| 男人添女人下部高潮视频在观看 | 99免费视频观看| 国产a级黄色大片| 日韩毛片在线免费看| 国产大尺度在线观看| 久久久999视频| 777久久精品一区二区三区无码 | 特级黄色片视频| 97在线播放视频| dy888午夜| 黄色动漫网站入口| 无码熟妇人妻av在线电影| 在线免费观看av网| 成年人小视频网站| 狠狠爱免费视频| 亚洲精品无码久久久久久| 色撸撸在线观看| www亚洲国产| 欧美 日韩 国产 在线观看| 亚洲一二三av| 国产精品人人妻人人爽人人牛| 一二三四视频社区在线| 四季av一区二区三区| 午夜视频在线瓜伦| 精品久久久久久久无码| 在线观看高清免费视频| 黄瓜视频免费观看在线观看www | 一个色综合久久| 91在线第一页| 日韩一级特黄毛片| 18禁网站免费无遮挡无码中文| 免费 成 人 黄 色| 国产美女三级视频| 一级全黄肉体裸体全过程| 亚洲熟妇无码另类久久久| aa在线免费观看| 天天干天天av|