狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线

AI6126代做、Python設計程序代寫

時間:2024-04-12  來源:  作者: 我要糾錯



2023-S2 AI6126 Project 2
Blind Face Super-Resolution
Project 2 Specification (Version 1.0. Last update on 22 March 2024)
Important Dates
Issued: 22 March 2024
Release of test set: 19 April 2023 12:00 AM SGT
Due: 26 April 2023 11:59 PM SGT
Group Policy
This is an individual project
Late Submission Policy
Late submissions will be penalized (each day at 5% up to 3 days)
Challenge Description
Figure 1. Illustration of blind face restoration
The goal of this mini-challenge is to generate high-quality (HQ) face images from the
corrupted low-quality (LQ) ones (see Figure 1) [1]. The data for this task comes from
the FFHQ. For this challenge, we provide a mini dataset, which consists of 5000 HQ
images for training and 400 LQ-HQ image pairs for validation. Note that we do not
provide the LQ images in the training set. During the training, you need to generate
the corresponding LQ images on the fly by corrupting HQ images using the random
second-order degradation pipeline [1] (see Figure 2). This pipeline contains 4 types
of degradations: Gaussian blur, Downsampling, Noise, and Compression. We will
give the code of each degradation function as well as an example of the degradation
config for your reference.
Figure 2. Illustration of second-order degradation pipeline during training
During validation and testing, algorithms will generate an HQ image for each LQ face
image. The quality of the output will be evaluated based on the PSNR metric
between the output and HQ images (HQ images of the test set will not be released).
Assessment Criteria
In this challenge, we will evaluate your results quantitatively for scoring.
Quantitative evaluation:
We will evaluate and rank the performance of your network model on our given 400
synthetic testing LQ face images based on the PSNR.
The higher the rank of your solution, the higher the score you will receive. In general,
scores will be awarded based on the Table below.
Percentile
in ranking
≤ 5% ≤ 15% ≤ 30% ≤ 50% ≤ 75% ≤ 100% *
Scores 20 18 16 14 12 10 0
Notes:
● We will award bonus marks (up to 2 marks) if the solution is interesting or
novel.
● To obtain more natural HQ face images, we also encourage students to
attempt to use a discriminator loss with a GAN during the training. Note that
discriminator loss will lower the PSNR score but make the results look more
natural. Thus, you need to carefully adjust the GAN weight to find a tradeoff
between PSNR and perceptual quality. You may earn bonus marks (up to 2
marks) if you achieve outstanding results on the 6 real-world LQ images,
consisting of two slightly blurry, two moderately blurry, and two extremely
blurry test images. (The real-world test images will be released with the 400
test set) [optional]
● Marks will be deducted if the submitted files are not complete, e.g., important
parts of your core codes are missing or you do not submit a short report.
● TAs will answer questions about project specifications or ambiguities. For
questions related to code installation, implementation, and program bugs, TAs
will only provide simple hints and pointers for you.
Requirements
● Download the dataset, baseline configuration file, and evaluation script: here
● Train your network using our provided training set.
● Tune the hyper-parameters using our provided validation set.
● Your model should contain fewer than 2,276,356 trainable parameters, which
is 150% of the trainable parameters in SRResNet [4] (your baseline network).
You can use
● sum(p.numel() for p in model.parameters())
to compute the number of parameters in your network. The number of
parameters is only applicable to the generator if you use a GAN.
● The test set will be available one week before the deadline (this is a common
practice of major computer vision challenges).
● No external data and pre-trained models are allowed in this mini
challenge. You are only allowed to train your models from scratch using the
5000 image pairs in our given training set.
Submission Guidelines
Submitting Results on CodaLab
We will host the challenge on CodaLab. You need to submit your results to CodaLab.
Please follow the following guidelines to ensure your results are successfully
recorded.
● The CodaLab competition link:
https://codalab.lisn.upsaclay.fr/competitions/18233?secret_key
=6b842a59-9e76-47b1-8f56-283c5cb4c82b
● Register a CodaLab account with your NTU email.
● [Important] After your registration, please fill in the username in the Google
Form: https://forms.gle/ut764if5zoaT753H7
● Submit output face images from your model on the 400 test images as a zip
file. Put the results in a subfolder and use the same file name as the original
test images. (e.g., if the input image is named as 00001.png, your result
should also be named as 00001.png)
● You can submit your results multiple times but no more than 10 times per day.
You should report your best score (based on the test set) in the final report.
● Please refer to Appendix A for the hands-on instructions for the submission
procedures on CodaLab if needed.
Submitting Report on NTULearn
Submit the following files (all in a single zip file named with your matric number, e.g.,
A12345678B.zip) to NTULearn before the deadline:
● A short report in pdf format of not more than five A4 pages (single-column,
single-line spacing, Arial 12 font, the page limit excludes the cover page and
references) to describe your final solution. The report must include the
following information:
○ the model you use
○ the loss functions
○ training curves (i.e., loss)
○ predicted HQ images on 6 real-world LQ images (if you attempted the
adversarial loss during training)
○ PSNR of your model on the validation set
○ the number of parameters of your model
○ Specs of your training machine, e.g., number of GPUs, GPU model
You may also include other information, e.g., any data processing or
operations that you have used to obtain your results in the report.
● The best results (i.e., the predicted HQ images) from your model on the 400
test images. And the screenshot on Codalab of the score achieved.
● All necessary codes, training log files, and model checkpoint (weights) of your
submitted model. We will use the results to check plagiarism.
● A Readme.txt containing the following info:
○ Your matriculation number and your CodaLab username.
○ Description of the files you have submitted.
○ References to the third-party libraries you are using in your solution
(leave blank if you are not using any of them).
○ Any details you want the person who tests your solution to know when
they test your solution, e.g., which script to run, so that we can check
your results, if necessary.
Tips
1. For this project, you can use the Real-ESRGAN [1] codebase, which is based
on BasicSR toolbox that implements many popular image restoration
methods with modular design and provides detailed documentation.
2. We included a sample Real-ESRGAN configuration file (a simple network, i.e.,
SRResNet [4]) as an example in the shared folder. [Important] You need to:
a. Put “train_SRResNet_x4_FFHQ_300k.yml” under the “options” folder.
b. Put “ffhqsub_dataset.py” under the “realesrgan/data” folder.
The PSNR of this baseline on the validation set is around 26.33 dB.
3. For the calculation of PSNR, you can refer to ‘evaluate.py’ in the shared folder.
You should replace the corresponding path ‘xxx’ with your own path.
4. The training data is important in this task. If you do not plan to use MMEditing
for this project, please make sure your pipeline to generate the LQ data is
identical to the one in the configuration file.
5. The training configuration of GAN models is also available in Real-ESRGAN
and BasicSR. You can freely explore the repository.
6. The following techniques may help you to boost the performance:
a. Data augmentation, e.g. random horizontal flip (but do not use vertical
flip, otherwise, it will break the alignment of the face images)
b. More powerful models and backbones (within the complexity
constraint), please refer to some works in reference.
c. Hyper-parameters fine-tuning, e.g., choice of the optimizer, learning
rate, number of iterations
d. Discriminative GAN loss will help generate more natural results (but it
lowers PSNR, please find a trade-off by adjusting loss weights).
e. Think about what is unique to this dataset and propose novel modules.
References
[1] Wang et al., Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure
Synthetic Data, ICCVW 2021
[2] Wang et al., GFP-GAN: Towards Real-World Blind Face Restoration with Generative
Facial Prior, CVPR 2021
[3] Zhou et al., Towards Robust Blind Face Restoration with Codebook Lookup Transformer,
NeurIPS 2022
[4] C. Ledig et al., Photo-realistic Single Image Super-Resolution using a Generative
Adversarial Network, CVPR 2017
[5] Wang et al., A General U-Shaped Transformer for Image Restoration, CVPR 2022
[6] Zamir et al., Restormer: Efficient Transformer for High-Resolution Image Restoration,
CVPR 2022
Appendix A Hands-on Instructions for Submission on CodaLab
After your participation to the competition is approved, you can submit your results
here:
Then upload the zip file containing your results.
If the ‘STATUS’ turns to ‘Finished’, it means that you have successfully uploaded
your result. Please note that this may take a few minutes.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp


















 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代做IDEPG001、代寫c/c++,Java編程設計
  • 下一篇:CSI 2120代做、代寫Python/Java設計編程
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线
  • <dl id="akume"></dl>
  • <noscript id="akume"><object id="akume"></object></noscript>
  • <nav id="akume"><dl id="akume"></dl></nav>
  • <rt id="akume"></rt>
    <dl id="akume"><acronym id="akume"></acronym></dl><dl id="akume"><xmp id="akume"></xmp></dl>
    亚洲欧美久久久久| 青青艹视频在线| 久久精品视频16| 国产av熟女一区二区三区| 亚洲 国产 图片| 亚洲国产日韩欧美在线观看| 丰满少妇被猛烈进入高清播放| 大荫蒂性生交片| 日本福利视频一区| 欧美 日韩 国产在线观看| 僵尸世界大战2 在线播放| 亚洲 欧美 综合 另类 中字| 成人免费观看在线| 欧美 丝袜 自拍 制服 另类| 中文精品无码中文字幕无码专区| 日韩欧美一级在线| 久久艹国产精品| 欧美网站免费观看| 人人干人人视频| 亚洲欧美日本一区二区| 400部精品国偷自产在线观看| 国产农村妇女精品久久| 久久www视频| 国产午夜福利100集发布| 久久久久久久久久福利| 亚洲欧美手机在线| 成品人视频ww入口| 人人干人人干人人| 久久久久福利视频| 蜜臀久久99精品久久久酒店新书| 亚洲天堂2018av| 91传媒免费视频| 91国产精品视频在线观看| www.午夜av| 国产偷人视频免费| 成人在线免费高清视频| 无遮挡又爽又刺激的视频| 天天色天天综合网| 欧美日韩在线中文| 在线播放 亚洲| 不卡av免费在线| 性一交一乱一伧国产女士spa| 欧美视频在线播放一区| www.cao超碰| 妞干网在线免费视频| 国产肉体ⅹxxx137大胆| 中文字幕精品一区二区三区在线| 国产不卡一区二区视频| 久久久一二三四| 久久久久久久久久一区| 51xx午夜影福利| av在线免费看片| www.99在线| 男人亚洲天堂网| 免费看毛片的网址| 在线免费黄色小视频| 午夜在线观看av| 韩国一区二区av| 国产深夜男女无套内射| 国产一区二区三区播放| 香蕉视频xxxx| 五月天婷婷在线观看视频| 黄色三级视频片| 免费一级特黄录像| 国产又大又硬又粗| 熟妇人妻va精品中文字幕 | 久久久性生活视频| 看全色黄大色大片| www,av在线| 亚洲综合123| 国产对白在线播放| av亚洲天堂网| 一区二区三区四区毛片| 亚洲欧美自拍另类日韩| 国产精品宾馆在线精品酒店| 亚洲国产精品成人天堂| 少妇人妻无码专区视频| 日韩中文字幕三区| 久久久久久久久久久久91| 色婷婷综合网站| 1314成人网| 日韩小视频在线播放| 亚洲色成人一区二区三区小说| 日本一本二本在线观看| 一级特黄性色生活片| 亚洲欧美偷拍另类| 91免费网站视频| 欧美成人高潮一二区在线看| 国产h视频在线播放| 亚洲无吗一区二区三区| 看一级黄色录像| 欧美日韩激情视频在线观看| 波多野结衣天堂| 超碰10000| 可以在线看的黄色网址| 毛片毛片毛片毛| 国产一线二线三线女| 日本www在线播放| 亚洲激情在线看| 丁香花在线影院观看在线播放| 中国丰满熟妇xxxx性| 亚洲成人天堂网| 久激情内射婷内射蜜桃| 亚洲第一色av| 老熟妇仑乱视频一区二区| 只有这里有精品| 日韩欧美一区三区| 亚洲精品乱码久久久久久自慰| 亚洲欧美自偷自拍另类| www.国产二区| 亚洲欧美自拍另类日韩| a级免费在线观看| 五月六月丁香婷婷| 国产成人久久777777| 免费在线看黄色片| 手机福利在线视频| 三级在线视频观看| 日韩欧美xxxx| 男人日女人逼逼| 久草视频国产在线| 精品国产鲁一鲁一区二区三区| 欧美 日韩 国产 高清| 国产一级大片免费看| 四虎成人在线播放| 成年人视频在线免费| 国产亚洲黄色片| 麻豆tv在线播放| 国产九九九九九| 国产真实老熟女无套内射| 毛片在线视频观看| 黄网站色视频免费观看| 少妇熟女一区二区| 400部精品国偷自产在线观看| xxww在线观看| 午夜啪啪小视频| 公共露出暴露狂另类av| 国产女同无遮挡互慰高潮91| 三上悠亚av一区二区三区| 一区二区三区国产免费| www.久久av.com| 欧美 日韩 国产 在线观看| 一区二区三区国产好的精华液| 国产成人美女视频| 福利网在线观看| 国产在线播放观看| 久草青青在线观看| 欧美成人黄色网址| 粉色视频免费看| 亚洲欧美一二三| 久久久久久久激情| 一区二区三区视频网| 午夜剧场高清版免费观看| 亚洲 欧洲 日韩| av在线播放亚洲| 成年人在线观看视频免费| 黄色a级三级三级三级| 日韩在线视频在线| 国产成人久久777777| 手机精品视频在线| 日本在线xxx| 亚洲精品手机在线观看| 国产 欧美 日本| 999精彩视频| 久久在线中文字幕| 亚洲成色www.777999| 99亚洲国产精品| 国产日韩成人内射视频| 中文国产在线观看| 日韩手机在线观看视频| 中文字幕第一页亚洲| 夫妻免费无码v看片| 美女黄色片网站| 蜜臀av免费观看| 国产黄色片免费在线观看| 国产视频在线视频| 青青在线免费观看| 国产农村妇女精品久久| 韩国日本美国免费毛片| 免费人成在线观看视频播放| 鲁一鲁一鲁一鲁一av| 国产免费一区二区视频| www.国产福利| 天堂一区在线观看| 白嫩少妇丰满一区二区| 国产午夜福利100集发布| 国产精品久久成人免费观看| 国产三级三级三级看三级| 黄色影院一级片| 轻点好疼好大好爽视频| 大地资源第二页在线观看高清版| 日本久久久久久久久久久久| 欧美日韩在线一| 日韩人妻无码精品久久久不卡| 精产国品一二三区| 久久精品久久99| av电影一区二区三区| 97精品国产97久久久久久粉红| 99国产精品久久久久久| 中文字幕 日韩 欧美| 国产永久免费网站|