狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线

代寫COMP34212、代做Python/c++程序設計

時間:2024-04-29  來源:  作者: 我要糾錯



COMP34212 Cognitive Robotics Angelo Cangelosi
COMP34212: Coursework on Deep Learning and Robotics
34212-Lab-S-Report
Submission deadline: 18 April 2024, 18:00 (BlackBoard)
Aim and Deliverable
The aim of this coursework is (i) to analyse the role of the deep learning approach within the
context of the state of the art in robotics, and (ii) to develop skills on the design, execution and
evaluation of deep neural networks experiments for a vision recognition task. The assignment will
in particular address the learning outcome LO1 on the analysis of the methods and software
technologies for robotics, and LO3 on applying different machine learning methods for intelligent
behaviour.
The first task is to do a brief literature review of deep learning models in robotics. You can give a
summary discussion of various applications of DNN to different robotics domains/applications.
Alternatively, you can focus on one robotic application, and discuss the different DNN models used
for this application. In either case, the report should show a good understanding of the key works in
the topic chosen.
The second task is to extend the deep learning laboratory exercises (e.g. Multi-Layer Perceptron
(MLP) and/or Convolutional Neural Network (CNN) exercises for image datasets) and carry out and
analyse new training simulations. This will allow you to evaluate the role of different
hyperparameter values and explain and interpret the general pattern of results to optimise the
training for robotics (vision) applications. You should also contextualise your work within the state
of the art, with a discussion of the role of deep learning and its pros and cons for robotics research
and applications.
You can use the standard object recognition datasets (e.g. CIFAR, COCO) or robotics vision datasets
(e.g. iCub World1, RGB-D Object Dataset2). You are also allowed to use other deep learning models
beyond those presented in the lab.
The deliverable to submit is a report (max 5 pages including figures/tables and references) to
describe and discuss the training simulations done and their context within robotics research and
applications. The report must also include on online link to the Code/Notebook within the report,
or ad the code as appendix (the Code Appendix is in addition to the 5 pages of the core report). Do
not use AI/LLM models to generate your report. Demonstrate a credible analysis and discussion of
1 https://robotology.github.io/iCubWorld/
2 https://rgbd-dataset.cs.washington.edu/index.html
COMP34212 Cognitive Robotics Angelo Cangelosi
your own simulation setup and results, not of generic CNN simulations. And demonstrate a
credible, personalised analysis of the literature backed by cited references.
Marking Criteria (out of 30)
1. Contextualisation and state of the art in robotics and deep learning, with proper use of
citations backing your academic brief review and statements (marks given for
clarity/completeness of the overview of the state of the art, with spectrum of deep learning
methods considered in robotics; credible personalised critical analysis of the deep learning
role in robotics; quality and use of the references cited) [10]
2. A clear introductory to the DNN classification problem and the methodology used, with
explanation and justification of the dataset, the network topology and the hyperparameters
chosen; Add Link to the code/notebook you used or add the code in appendix. [3]
3. Complexity of the network(s), hyperparameters and dataset (marks given for complexity
and appropriateness of the network topology; hyperparameter exploration approach; data
processing and coding requirements) [4]
4. Description, interpretation, and assessment of the results on the hyperparameter testing
simulations; include appropriate figures and tables to support the results; depth of the
interpretation and assessment of the quality of the results (the text must clearly and
credibly explain the data in the charts/tables); Discussion of alternative/future simulations
to complement the results obtained) [13]
5. 10% Marks lost if report longer than the required maximum of 5 pages: 10% Marks lost if
code/notebook (link to external repository or as appendix) is not included.
Due Date: 18 April 2024, h18.00, pdf on Blackboard. Use standard file name: 34212-Lab-S-Report

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp















 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:ENGI 1331代做、代寫R程序語言
  • 下一篇:代做FINM7008、代寫FINM7008 Applied Investments
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區(qū)
    昆明西山國家級風景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網(wǎng)下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權所有
    ICP備06013414號-3 公安備 42010502001045

    狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线
  • <dl id="akume"></dl>
  • <noscript id="akume"><object id="akume"></object></noscript>
  • <nav id="akume"><dl id="akume"></dl></nav>
  • <rt id="akume"></rt>
    <dl id="akume"><acronym id="akume"></acronym></dl><dl id="akume"><xmp id="akume"></xmp></dl>
    亚洲一级片av| 欧日韩免费视频| 日本久久久网站| 日本不卡一区在线| 日本特黄a级片| 无人在线观看的免费高清视频| 国产911在线观看| 婷婷激情四射五月天| 久久婷婷国产91天堂综合精品| 欧美a在线视频| 欧美aⅴ在线观看| 日本www高清视频| 在线观看国产一级片| www.精品在线| 第一区免费在线观看| 日韩不卡的av| 潘金莲一级淫片aaaaaa播放1| 久久最新免费视频| 国产精品久久国产| 国产精品视频网站在线观看| 国产美女永久无遮挡| 久久成人免费观看| 午夜免费一区二区| 91热视频在线观看| 僵尸世界大战2 在线播放| 美女福利视频在线| 热久久久久久久久| 欧美一级视频免费看| 日本一极黄色片| 精品一区二区成人免费视频| 黄色三级中文字幕| 久久婷婷国产91天堂综合精品| 色婷婷成人在线| 喜爱夜蒲2在线| 992kp快乐看片永久免费网址| 日韩精品久久一区二区| 一级特黄性色生活片| 18视频在线观看娇喘| 亚洲乱码国产一区三区| 天堂av在线中文| 茄子视频成人免费观看| 欧美交换配乱吟粗大25p| 北条麻妃在线视频| 国产一级做a爰片久久毛片男| 好男人www社区| 成人午夜视频免费观看| 男人插女人下面免费视频| 老太脱裤子让老头玩xxxxx| 久久久久久综合网| 超碰在线公开97| 欧美精品色婷婷五月综合| 996这里只有精品| 中文字幕1234区| 一本久道综合色婷婷五月| 99在线免费视频观看| 超碰中文字幕在线观看| 999精彩视频| 国产又黄又大又粗视频| av动漫在线看| 日韩精品久久一区二区| 婷婷视频在线播放| 亚洲综合123| 日本人69视频| 手机在线看福利| xx欧美撒尿嘘撒尿xx| 成人亚洲视频在线观看| 国产精品免费入口| 2018日日夜夜| 97在线国产视频| 少妇av一区二区三区无码| 国产a级黄色大片| 日韩精品在线观看av| 成人国产一区二区三区| 欧美亚洲视频一区| 色婷婷777777仙踪林| 色爽爽爽爽爽爽爽爽| 日韩人妻一区二区三区蜜桃视频| 国产精品av免费| 日本免费a视频| 欧美日韩亚洲一| 国产又大又黄又粗又爽| 久久久九九九热| av动漫在线播放| 欧美一区二区中文字幕| 日韩avxxx| 亚洲欧美自偷自拍另类| 亚洲精品视频三区| 蜜臀在线免费观看| 日本阿v视频在线观看| 男女午夜激情视频| 亚洲欧美自偷自拍另类| 日本三日本三级少妇三级66| 亚洲中文字幕无码av永久| 免费在线观看的av网站| 在线播放免费视频| 久久这里只有精品18| 成人免费视频久久| 强伦女教师2:伦理在线观看| 18岁网站在线观看| 91视频这里只有精品| 人妻激情另类乱人伦人妻| 久草精品在线播放| 亚洲欧美日本一区二区三区| 青青青在线观看视频| 亚洲天堂av线| 喜爱夜蒲2在线| www.久久91| 黄色国产精品视频| 国产又粗又长又爽视频| 中文字幕22页| 欧洲黄色一级视频| 大胆欧美熟妇xx| 中文字幕中文在线| 日韩a在线播放| 免费极品av一视觉盛宴| 日韩a一级欧美一级| 免费在线a视频| 四虎4hu永久免费入口| 天天操天天爱天天爽| 国产精品50p| 看全色黄大色大片| 欧美性视频在线播放| 91在线视频观看免费| 国产不卡一区二区视频| 国产又粗又爽又黄的视频| 久久6免费视频| 久久婷婷国产91天堂综合精品| 欧美三级在线观看视频| 男人天堂新网址| 粉色视频免费看| 中文字幕无码不卡免费视频| 久久在线中文字幕| 日韩国产成人无码av毛片| 中国黄色录像片| 一本色道久久88亚洲精品综合| 日日干日日操日日射| 日本a√在线观看| 国产最新免费视频| 欧美成人一区二区在线观看| www.av片| 国产男女激情视频| 91香蕉视频导航| 亚洲欧美手机在线| 国产又爽又黄ai换脸| 亚洲制服在线观看| 青青草免费在线视频观看| 日韩精品一区二区在线视频 | 久久精品视频16| 可以在线看的av网站| 国产原创popny丨九色| 精品久久久久久无码国产| 色一情一乱一伦一区二区三区日本| 无码人妻h动漫| 91精品999| 欧美一区二区激情| 黄色动漫网站入口| 国产又黄又猛又粗| 国产黄色激情视频| 欧美牲交a欧美牲交aⅴ免费真| 日本毛片在线免费观看| 四季av一区二区三区| 日韩一区二区高清视频| 欧美精品成人网| 欧美爱爱视频网站| 无码精品a∨在线观看中文| 天天操天天爱天天爽| 天堂а√在线中文在线| 日本男人操女人| 大地资源第二页在线观看高清版| 免费在线黄网站| 污片在线免费看| 免费 成 人 黄 色| 国产5g成人5g天天爽| 97在线免费公开视频| 国产无遮挡猛进猛出免费软件| 热99这里只有精品| 亚洲欧美一二三| 男女曰b免费视频| 国产激情片在线观看| 国产一级特黄a大片免费| 国产乱子伦精品无码专区| 日韩一区二区三区久久| 91九色在线观看视频| 久久www视频| 二级片在线观看| 天天操天天爽天天射| 男人操女人免费软件| 欧美性猛交内射兽交老熟妇| 亚洲精品www.| 国产精品人人妻人人爽人人牛| a天堂资源在线观看| 特黄特黄一级片| 亚洲精品在线视频播放| 91日韩视频在线观看| 能看的毛片网站| 成年网站在线播放| 中文久久久久久| 日本久久久久久久久久久久| 少妇人妻互换不带套| 久久精品午夜福利|