狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线

代做COCMP5328、代寫Python設計程序

時間:2024-05-07  來源:  作者: 我要糾錯



COCMP5328 - Advanced Machine Learning 
Assignment 1 
This assignment is to be completed in groups of 2 to 3 students. It is worth 25% of your 
total mark. 
1 Objective 
The objective of this assignment is to implement Non-negative Matrix Factorization 
(NMF) algorithms and analyze the robustness of NMF algorithms when the dataset is 
contaminated by large magnitude noise or corruption. More specifically, you should 
implement at least two NMF algorithms and compare their robustness. 
2 Instructions 
2.1 Dataset description 
In this assignment, you need to apply NMF algorithms on two real-world face image 
datasets: (1) ORL dataset
1; (2) Extended YaleB dataset
2

• ORL dataset: it contains 400 images of 40 distinct subjects (i.e., 10 images per 
subject). For some subjects, the images were taken at different times, varying the 
lighting, facial expressions, and facial details (glasses / no glasses). All the images 
were taken against a dark homogeneous background with the subjects in an 
upright, frontal position. All images are cropped and resized to 92×112 pixels. 
• Extended YaleB dataset: it contains 2414 images of 38 subjects under 9 poses 
and 64 illumination conditions. All images are manually aligned, cropped, and 
then resized to 168×192 pixels. 
 
     1    https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html    
2    http://vision.ucsd.edu/    iskwak/ExtYaleDatabase/ExtYaleB.html    2    
Figure 1: An example face image and its occluded versions by b × b-blocks with b = 
10,12, and 14 pixels. 
Note: we provide a tutorial for this assignment, which contains example code for 
loading a dataset to numpy array. Please find more details in assignment1.ipynb. 
2.2 Assignment tasks 
1. You need to implement at least two Non-negative Matrix Factorization (NMF) 
algorithms: 
• You should implement at least two NMF algorithms with at least one not 
taught in this course (e.g., L1-Norm Based NMF, Hypersurface Cost Based 
NMF, L1-Norm Regularized Robust NMF, and L2,1-Norm Based NMF). 
• For each algorithm, you need to describe the definition of cost function as 
well as the optimization methods used in your implementation. 
2. You need to analyze the robustness of each algorithm on two datasets: 
• You are allowed to design your own data pre-processing method (if 
necessary). 
• You need to use a block-occlusion noise similar to those shown in Figure 1. 
The noise is generated by setting the pixel values to be 255 in the block. You 
should design your own value for b (not necessary to be 10,12 or 14). You 
are also encouraged to design your own noise other than the block-occlusion 
noise. 
• You need to demonstrate each type of noise used in your experiment (show 
the original image as well as the image contaminated by noise). 
• You should carefully choose the NMF algorithms and design experiment 
settings to clearly show the different robustness of the algorithms you have 
implemented. 
3. You are only allowed to use the python standard library, numpy and scipy (if 
necessary) to implement NMF algorithms. 3    
2.3 Programming and External Libraries Python
This assignment is required to be finished by 3. When you implement NMF 
algorithms, you are not allowed to use external libraries which contains NMF 
implementations, such as scikit-learn, and Nimfa (i.e., you have to implement the NMF 
algorithms by yourself). You are allowed to use scikit-learn for evaluation only (please 
find more details in assignment1.ipynb). If you have any ambiguity whether you can 
use a particular library or a function, please post on canvas under the Assignment 1 
thread. 
2.4 Evaluate metrics 
To compare the performance and robustness of different NMF algorithms, we provide 
three evaluation metrics: (1) Root Means Square Errors; (2) Average Accuracy; (3) 
Normalized Mutual Information. For all experiments, you need to use at least two 
metrics, i.e., Root Means Square Errors and Average Accuracy. 
• Root Means Square Errors (RMSE): let X denote the contaminated dataset (by 
adding noise), and      ̂ denote the clean dataset. Let   and   denote the 
factorization results on      ̂ , the Root Means Square Errors then can be defined 
as follows: 
(1) 
• Average Accuracy: You need to perform some clustering algorithms (i.e., Kmeans)
with num clusters equal to num classes. Each example is assigned with 
the cluster label (please find more details in assignment1.ipynb). Lastly, you can 
evaluate the accuracy of predictions Ypred as follows: 
 (3) 
where I(·,·) is mutual information and H(·) is entropy. 
Note: we expect you to have a rigorous performance evaluation. To provide an estimate 
of the performance of the algorithms in the report, you can repeat multiple times (e.g., 
5 times) for each experiment by randomly sampling 90% data from the whole dataset 
and average the metrics on different subset. You are also required to report the standard 
deviations. 4    
3 Report 
The report should be organized like research papers, and should contain the following 
sections: 
• In abstract, you should briefly introduce the topic of this assignment and describe 
the organization of your report. 
• In introduction, you should first introduce the main idea of NMF as well as its 
applications. You should then give an overview of the methods you want to use. 
• In related work, you are expected to review the main idea of related NMF 
algorithms (including their advantages and disadvantages). 
• In methods, you should describe the details of your method (including the 
definition of cost functions as well as optimization steps). You should also 
describe your choices of noise and you are encouraged to explain the robustness 
of each algorithm from theoretical view. 
• In experiment, firstly, you should introduce the experimental setup (e.g., datasets, 
algorithms, and noise used in your experiment for comparison). 
Second, you should show the experimental results and give some comments. 
• In conclusion, you should summarize your results and discuss your insights for 
future work. 
• In reference, you should list all references cited in your report and formatted all 
references in a consistent way. 
The layout of the report: 
• Font: Times New Roman; Title: font size 14; Body: font size 12 
• Length: Ideally 10 to 15 pages - maximum 20 pages 
Note: You are encouraged to use LaTeX. Optionally, a MS-Word template is provided. 
4 Submissions 
The submission contains two parts: source code and report. Detailed instructions are 
as follows: 
1. Go to Canvas and upload the following files. 5    
1. report (a pdf file): the report should include each member’s details 
(student id and name). 
2. code (a folder) as zip file 
i. algorithm (a sub-folder): your code could be multiple files inside 
algorithm sub-folder. 
ii. data (an empty sub-folder): although two datasets should be inside the 
data folder, please do not include them in the zip file. We will copy two 
datasets to the data folder when we test the code. 
2. Only one student needs to submit the report as pdf file and code as zip file which 
must be named as student ID numbers of all group members separated by 
underscores. 
E.g., “xxxxx_xxxxx_xxxxx_code.zip and xxxxx_xxxxx_xxxxx_report.pdf”. 
3. Your submission should include the report and the code. A plagiarism checker 
will be used. 
4. You need to clearly provide instructions on how to run your code in the appendix 
of the report. 
5. Indicate the contribution of each group member. 
6. A penalty of minus 1.25 (5%) marks per each day after due (email late 
submissions to TA and confirm late submission dates with TA). Maximum delay 
is 5 days, Assignments more than 5 days late will get 0. 
 
5 Plagiarism 
• Please read the University Policy on Academic Honesty carefully: 
http://sydney.edu.au/elearning/student/EI/academic_honesty.shtml 
• All cases of academic dishonesty and plagiarism will be investigated. 
• There is a new process and a centralised University system and database. 
• Three types of offences: 
1. Plagiarism – When you copy from another student, website or other 
source. This includes copying the whole assignment or only a part of it. 
2. Academic Dishonesty – When you make your work available to another 
student to copy (the whole assignment or a part of it). There are other 
examples of academic dishonesty. 6    
3. Misconduct - When you engage another person to complete your 
assignment (or a part of it), for payment or not. This is a very serious 
matter, and the Policy requires that your case is forwarded to the 
University Registrar for investigation. 
• The penalties are severe and include: 
1. A permanent record of academic dishonesty, plagiarism, and misconduct 
in the University database and on your student file. 
2. Mark deduction, ranging from 0 for the assignment to Fail for the course. 
3. Expulsion from the University and cancelling of your student visa. 
• When there is copying between students, note that both students are penalised – 
the student who copies and the student who makes his/her work available for 
copying. 
• It is noted that only 30% (including references) is acceptable. The high 
plagiarism will be reported to the school. 
 
 7    
6 Marking scheme 
Category Criterion Marks Comments 
Report [20] Abstract [0.75] 
•Problem, methods, organization. 
Introduction [1.25] 
•What is the problem you intend to solve? 
•Why is this problem important? 
Previous work [1.5] 
•Previous relevant methods used in literature? 
Methods [6.25] 
•Pre-processing (if any) •NMF 
Algorithm’s formulation. 
•Noise choice and description. 
Experiments and Discussions [6.25] 
•Experiments, comparisons, and evaluation 
•Extensive analysis and discussion of results 
•Relevant personal reflection 
Conclusions and Future work [0.75] 
•Meaningful conclusions based on results 
•Meaningful future work suggested 
Presentation [1.25] 
•Grammatical sentences, no spelling mistakes 
•Good structure and layout, consistent 
formatting 
•Appropriate citation and referencing 
•Use graphs and tables to summarize data 
Other [2] 
•At the discretion of the marker: for impressing 
the marker, excelling expectation, etc. 
Examples include clear presentation, welldesigned
experiment, fast code, etc. 
 8    
Code [5] 
•Code runs within a feasible time 
•Well organized, commented and documented 
 
Penalties [−] 
•Badly written code: [−5] 
•Not including instructions on how to run your 
code: [−5] 
 
Note: Marks for each category is indicated in square brackets. The minimum mark for the assignment will be 0 (zero). 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp























 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP4403、代做Java編程語言
  • 下一篇:COMP1212代寫、代做Java/c++程序設計
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线
  • <dl id="akume"></dl>
  • <noscript id="akume"><object id="akume"></object></noscript>
  • <nav id="akume"><dl id="akume"></dl></nav>
  • <rt id="akume"></rt>
    <dl id="akume"><acronym id="akume"></acronym></dl><dl id="akume"><xmp id="akume"></xmp></dl>
    欧美亚洲一二三区| 中文字幕 91| a√天堂在线观看| 又色又爽又黄视频| 黄网站欧美内射| 九九视频精品在线观看| 污视频网站观看| 日韩精品xxxx| 欧美一级特黄aaaaaa在线看片| 日韩精品一区二区三区不卡 | 三上悠亚久久精品| 精品少妇在线视频| 欧美日韩视频免费| 97超碰在线视| 日韩精品久久一区二区| www.com污| 日韩成人av免费| 五月婷婷丁香综合网| 黄色大片中文字幕| 少妇高清精品毛片在线视频| 亚洲高潮无码久久| 中文字幕免费高清在线| 成人精品视频一区二区| 高清欧美精品xxxxx| 香蕉精品视频在线| 91欧美一区二区三区| 国产精品视频黄色| 精品久久久久久无码国产| 特级黄色录像片| av在线免费看片| 亚洲乱码国产一区三区| www.51色.com| 台湾无码一区二区| 久久国产精品国产精品| 国产一二三四五| 黄色www网站| 大桥未久一区二区三区| 久久久久人妻精品一区三寸| 污污网站在线观看视频| www.亚洲天堂网| 99er在线视频| 色综合久久久久无码专区| 2022亚洲天堂| 免费日韩中文字幕| 牛夜精品久久久久久久| xxx国产在线观看| 最近中文字幕免费mv| 青青在线免费视频| 国产一区二区视频播放| 国产96在线 | 亚洲| 霍思燕三级露全乳照| 精品这里只有精品| 国产高清不卡无码视频| 久久婷婷综合色| 一区二区在线播放视频| 成人羞羞国产免费网站| 缅甸午夜性猛交xxxx| youjizzxxxx18| 国产精品视频一二三四区| 欧美激情亚洲天堂| 国产美女在线一区| 99精品一级欧美片免费播放| 一女被多男玩喷潮视频| 国产又粗又硬又长| 午夜在线观看av| 成人中文字幕在线播放| 天天干天天曰天天操| 国产成人无码一二三区视频| 2021狠狠干| 国产无限制自拍| 国产v亚洲v天堂无码久久久| 一级黄色特级片| 91在线第一页| 久久这里只有精品23| 国产av熟女一区二区三区| 浮妇高潮喷白浆视频| 午夜免费看视频| 亚洲熟妇无码一区二区三区导航| 一级黄色在线播放| www.国产视频.com| 天天爽夜夜爽一区二区三区| 日本精品久久久久中文字幕| 99久久国产综合精品五月天喷水| 国产网站免费在线观看| 亚欧美在线观看| 女人色极品影院| 99热一区二区| 国产精品后入内射日本在线观看| 999精品网站| 欧美日韩午夜爽爽| 亚洲综合激情视频| 国产在线青青草| www.av片| 日韩免费在线观看av| 九九热99视频| 亚洲精品免费一区亚洲精品免费精品一区| 精品人妻人人做人人爽| 99精品在线免费视频| 精品国偷自产一区二区三区| 真人抽搐一进一出视频| 久久精品国产精品亚洲色婷婷| 可以在线看的av网站| 亚洲免费黄色录像| 精品免费国产一区二区| 三级av免费观看| 91在线第一页| 国产日韩一区二区在线| 免费在线看黄色片| 不用播放器的免费av| 日韩在线xxx| 欧美成人高潮一二区在线看| 97精品国产97久久久久久粉红| 男人添女人下面高潮视频| 成人国产一区二区三区| 小泽玛利亚视频在线观看| 日本中文字幕网址| 日日噜噜夜夜狠狠久久丁香五月| 鲁一鲁一鲁一鲁一av| 黄色片视频在线播放| 99999精品视频| 中文字幕在线观看第三页| 日韩有码免费视频| 国产性生交xxxxx免费| 亚洲综合日韩欧美| 欧美一级特黄aaa| 午夜在线视频免费观看| 亚洲欧美久久久久| 男人午夜视频在线观看| 99中文字幕在线| 久久观看最新视频| 久久精品免费一区二区| 韩国日本美国免费毛片| 在线免费观看av网| 中文字幕超清在线免费观看| www.夜夜爱| 中文字幕亚洲乱码| 波多野结衣 作品| 已婚少妇美妙人妻系列| 午夜影院免费版| 男女高潮又爽又黄又无遮挡| 91国内在线播放| 夫妻免费无码v看片| 亚洲视频在线不卡| 欧美伦理片在线看| 国产午夜精品视频一区二区三区| 能在线观看的av| 国产又粗又猛又爽又黄的网站| 国产一二三四在线视频| 国产免费一区二区视频| 特级西西444www| 亚洲小视频网站| 国产性xxxx18免费观看视频| 911av视频| 91日韩精品视频| 亚洲熟妇av一区二区三区| 国产一二三区在线播放| 青青草视频在线免费播放| 日本免费黄色小视频| 污污的网站18| 性生活免费在线观看| 免费黄色特级片| 亚洲成色www.777999| 日韩欧美亚洲天堂| 日本三级免费观看| 777米奇影视第四色| 亚洲精品视频导航| 伊人精品视频在线观看| 三年中文在线观看免费大全中国| 羞羞的视频在线| 三级av免费看| 欧美激情亚洲天堂| 久久久久久久中文| 日韩av在线中文| www.久久91| 日本手机在线视频| 不要播放器的av网站| 成人免费在线观看视频网站| 亚洲第一页在线视频| avav在线看| 欧美乱做爰xxxⅹ久久久| 免费超爽大片黄| 肉色超薄丝袜脚交| 久久综合九色综合88i| 国产成年人视频网站| 九九热只有这里有精品| 九色porny自拍| 精品久久一二三| 久久人妻无码一区二区| 欧美国产日韩另类| 麻豆一区二区三区视频| 男女激情免费视频| av电影一区二区三区| 亚洲小视频网站| 蜜臀av免费观看| 国产精品无码专区av在线播放 | 亚洲精品永久视频| 欧美 日韩 国产一区| 男人操女人免费软件| 日韩精品xxxx| 东京热加勒比无码少妇|