狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线

COMP9444代做、代寫Python編程設計

時間:2024-07-04  來源:  作者: 我要糾錯



COMP9444 Neural Networks and Deep Learning
Term 2, 2024
Assignment - Characters and Hidden Unit Dynamics
Due: Tuesday 2 July, 23:59 pm
Marks: 20% of final assessment
In this assignment, you will be implementing and training neural network models for three
different tasks, and analysing the results. You are to submit two Python files and , as well as
a written report (in format). kuzu.pycheck.pyhw1.pdfpdf
Provided Files
Copy the archive hw1.zip into your own filespace and unzip it. This should create a directory ,
subdirectories and , and eight Python files , , , , , , and .
hw1netplotkuzu.pycheck.pykuzu_main.pycheck_main.pyseq_train.pyseq_models.pyseq_plot.pyanb2n.py
Your task is to complete the skeleton files and and submit them, along with your report.
kuzu.pycheck.py
Part 1: Japanese Character Recognition
For Part 1 of the assignment you will be implementing networks to recognize handwritten
Hiragana symbols. The dataset to be used is Kuzushiji-MNIST or KMNIST for short. The
paper describing the dataset is available here. It is worth reading, but in short: significant
changes occurred to the language when Japan reformed their education system in 1868,
and the majority of Japanese today cannot read texts published over 150 years ago. This
paper presents a dataset of handwritten, labeled examples of this old-style script
(Kuzushiji). Along with this dataset, however, they also provide a much simpler one,
containing 10 Hiragana characters with 7000 samples per class. This is the dataset we will
be using.
Text from 1772 (left) compared to 1900 showing the standardization of written
Japanese.
1. [1 mark] Implement a model which computes a linear function of the pixels in the
image, followed by log softmax. Run the code by typing: Copy the final accuracy and
confusion matrix into your report. The final accuracy should be around 70%. Note that
the rows of the confusion matrix indicate the target character, while the columnsindicate the one chosen by the network. (0="o", 1="ki", 2="su", 3="tsu", 4="na",
5="ha", 6="ma", 7="ya", 8="re", 9="wo"). More examples of each character can be
found here. NetLin
python3 kuzu_main.py --net lin
2. [1 mark] Implement a fully connected 2-layer network (i.e. one hidden layer, plus the
output layer), using tanh at the hidden nodes and log softmax at the output node.
Run the code by typing: Try different values (multiples of 10) for the number of hidden
nodes and try to determine a value that achieves high accuracy (at least 84%) on the
test set. Copy the final accuracy and confusion matrix into your report, and include a
calculation of the total number of independent parameters in the network. NetFull
python3 kuzu_main.py --net full
3. [2 marks] Implement a convolutional network called , with two convolutional layers
plus one fully connected layer, all using relu activation function, followed by the
output layer, using log softmax. You are free to choose for yourself the number and
size of the filters, metaparameter values (learning rate and momentum), and whether
to use max pooling or a fully convolutional architecture. Run the code by typing: Your
network should consistently achieve at least 93% accuracy on the test set after 10
training epochs. Copy the final accuracy and confusion matrix into your report, and
include a calculation of the total number of independent parameters in the network.
NetConv
python3 kuzu_main.py --net conv
4. [4 marks] Briefly discuss the following points:
a. the relative accuracy of the three models,
b. the number of independent parameters in each of the three models,
c. the confusion matrix for each model: which characters are most likely to be
mistaken for which other characters, and why?
Part 2: Multi-Layer Perceptron
In Part 2 you will be exploring 2-layer neural networks (either trained, or designed by hand)
to classify the following data:
1. [1 mark] Train a 2-layer neural network with either 5 or 6 hidden nodes, using sigmoid
activation at both the hidden and output layer, on the above data, by typing: You may
need to run the code a few times, until it achieves accuracy of 100%. If the network
appears to be stuck in a local minimum, you can terminate the process with ⟨ctrl⟩-Cand start again. You are free to adjust the learning rate and the number of hidden
nodes, if you wish (see code for details). The code should produce images in the
subdirectory graphing the function computed by each hidden node () and the
network as a whole (). Copy these images into your report.
python3 check_main.py --act sig --hid 6
plothid_6_?.jpgout_6.jpg
2. [2 marks] Design by hand a 2-layer neural network with 4 hidden nodes, using the
Heaviside (step) activation function at both the hidden and output layer, which
correctly classifies the above data. Include a diagram of the network in your report,
clearly showing the value of all the weights and biases. Write the equations for the
dividing line determined by each hidden node. Create a table showing the activations
of all the hidden nodes and the output node, for each of the 9 training items, and
include it in your report. You can check that your weights are correct by entering them
in the part of where it says "Enter Weights Here", and typing: check.py
python3 check_main.py --act step --hid 4 --set_weights
3. [1 mark] Now rescale your hand-crafted weights and biases from Part 2 by multiplying
all of them by a large (fixed) number (for example, 10) so that the combination of
rescaling followed by sigmoid will mimic the effect of the step function. With these rescaled
 weights and biases, the data should be correctly classified by the sigmoid
network as well as the step function network. Verify that this is true by typing: Once
again, the code should produce images in the subdirectory showing the function
computed by each hidden node () and the network as a whole (). Copy these images
into your report, and be ready to submit with the (rescaled) weights as part of your
assignment submission.
python3 check_main.py --act sig --hid 4 --set_weights
plothid_4_?.jpgout_4.jpgcheck.py
Part 3: Hidden Unit Dynamics for Recurrent Networks
In Part 3 you will be investigating the hidden unit dynamics of recurrent networks trained
on language prediction tasks, using the supplied code and . seq_train.pyseq_plot.py1. [2 marks] Train a Simple Recurrent Network (SRN) on the Reber Grammar prediction
task by typing This SRN has 7 inputs, 2 hidden units and 7 outputs. The trained
networks are stored every 10000 epochs, in the subdirectory. After the training
finishes, plot the hidden unit activations at epoch 50000 by typing The dots should be
arranged in discernable clusters by color. If they are not, run the code again until the
training is successful. The hidden unit activations are printed according to their "state",
using the colormap "jet": Based on this colormap, annotate your figure (either
electronically, or with a pen on a printout) by drawing a circle around the cluster of
points corresponding to each state in the state machine, and drawing arrows between
the states, with each arrow labeled with its corresponding symbol. Include the
annotated figure in your report.
python3 seq_train.py --lang reber
net
python3 seq_plot.py --lang reber --epoch 50
2. [1 mark] Train an SRN on the a
nb
n
 language prediction task by typing The a
nb
n
language is a concatenation of a random number of A's followed by an equal number
of B's. The SRN has 2 inputs, 2 hidden units and 2 outputs.
python3 seq_train.py --lang anbn
Look at the predicted probabilities of A and B as the training progresses. The first B in
each sequence and all A's after the first A are not deterministic and can only be
predicted in a probabilistic sense. But, if the training is successful, all other symbols
should be correctly predicted. In particular, the network should predict the last B in
each sequence as well as the subsequent A. The error should be consistently in the
range of 0.01 to 0.03. If the network appears to have learned the task successfully, you
can stop it at any time using ⟨cntrl⟩-c. If it appears to be stuck in a local minimum, you
can stop it and run the code again until it is successful.
After the training finishes, plot the hidden unit activations by typing
python3 seq_plot.py --lang anbn --epoch 100
Include the resulting figure in your report. The states are again printed according to
the colormap "jet". Note, however, that these "states" are not unique but are instead
used to count either the number of A's we have seen or the number of B's we are still
expecting to see.Briefly explain how the a
nb
n
 prediction task is achieved by the network, based on the
generated figure. Specifically, you should describe how the hidden unit activations
change as the string is processed, and how it is able to correctly predict the last B in
each sequence as well as the following A.
3. [2 marks] Train an SRN on the a
nb
n
c
n language prediction task by typing The SRN
now has 3 inputs, 3 hidden units and 3 outputs. Again, the "state" is used to count up
the A's and count down the B's and C's. Continue training (and re-start, if necessary)
for 200k epochs, or until the network is able to reliably predict all the C's as well as the
subsequent A, and the error is consistently in the range of 0.01 to 0.03.
python3 seq_train.py --lang anbncn
After the training finishes, plot the hidden unit activations at epoch 200000 by typing
python3 seq_plot.py --lang anbncn --epoch 200
(you can choose a different epoch number, if you wish). This should produce three
images labeled , and also display an interactive 3D figure. Try to rotate the figure in 3
dimensions to get one or more good view(s) of the points in hidden unit space, save
them, and include them in your report. (If you can't get the 3D figure to work on your
machine, you can use the images anbncn_srn3_??.jpganbncn_srn3_??.jpg)
Briefly explain how the a
nb
n
c
n
 prediction task is achieved by the network, based on
the generated figure. Specifically, you should describe how the hidden unit activations
change as the string is processed, and how it is able to correctly predict the last B in
each sequence as well as all of the C's and the following A.
4. [3 marks] This question is intended to be more challenging. Train an LSTM network to
predict the Embedded Reber Grammar, by typing You can adjust the number of
hidden nodes if you wish. Once the training is successful, try to analyse the behavior
of the LSTM and explain how the task is accomplished (this might involve modifying
the code so that it returns and prints out the context units as well as the hidden units).
python3 seq_train.py --lang reber --embed True --model lstm --hid 4
Submission
You should submit by typing
give cs9444 hw1 kuzu.py check.py hw1.pdf
You can submit as many times as you like — later submissions will overwrite earlier ones.
You can check that your submission has been received by using the following command:
9444 classrun -check hw1
The submission deadline is Tuesday 2 July, 23:59pm. In accordance with UNSW-wide
policies, 5% penalty will be applied for every 24 hours late after the deadline, up to a
maximum of 5 days, after which submissions will not be accepted.
Additional information may be found in the FAQ and will be considered as part of the
specification for the project. You should check this page regularly.Plagiarism Policy
Group submissions will not be allowed for this assignment. Your code and report must be
entirely your own work. Plagiarism detection software will be used to compare all
submissions pairwise (including submissions for similar assignments from previous offering,
if appropriate) and serious penalties will be applied, particularly in the case of repeat
offences.
DO NOT COPY FROM OTHERS; DO NOT ALLOW ANYONE TO SEE YOUR CODE
Please refer to the UNSW Policy on Academic Integrity and Plagiarism if you require further
clarification on this matter.
Good luck!
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp












 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫COMM1190、C/C++,Java設計編程代做
  • 下一篇:代做GSOE9340、代寫Python/Java程序語言
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    狠狠综合久久久久综合网址-a毛片网站-欧美啊v在线观看-中文字幕久久熟女人妻av免费-无码av一区二区三区不卡-亚洲综合av色婷婷五月蜜臀-夜夜操天天摸-a级在线免费观看-三上悠亚91-国产丰满乱子伦无码专区-视频一区中文字幕-黑人大战欲求不满人妻-精品亚洲国产成人蜜臀av-男人你懂得-97超碰人人爽-五月丁香六月综合缴情在线
  • <dl id="akume"></dl>
  • <noscript id="akume"><object id="akume"></object></noscript>
  • <nav id="akume"><dl id="akume"></dl></nav>
  • <rt id="akume"></rt>
    <dl id="akume"><acronym id="akume"></acronym></dl><dl id="akume"><xmp id="akume"></xmp></dl>
    妺妺窝人体色www看人体| 色婷婷.com| 无码人妻丰满熟妇区毛片| 国产精品嫩草影院8vv8| 欧美视频在线播放一区| 艹b视频在线观看| 全黄性性激高免费视频| 能在线观看的av| 亚洲熟妇av一区二区三区| 午夜啪啪福利视频| 欧美又黄又嫩大片a级| 日韩小视频在线播放| 国产精品夜夜夜爽张柏芝| 国产又大又黄又粗的视频| www.亚洲自拍| 99视频在线免费播放| 中文字幕亚洲欧洲| 米仓穗香在线观看| 国产二区视频在线| 中文字幕 日韩 欧美| 一道本在线免费视频| 国产精品v日韩精品v在线观看| 国产视频手机在线播放| 四虎影院一区二区| 青青草国产免费| 极品粉嫩美女露脸啪啪| 狠狠热免费视频| 黑鬼大战白妞高潮喷白浆| 日本精品免费视频| 色综合av综合无码综合网站| 91pony九色| av免费观看网| 无码aⅴ精品一区二区三区浪潮| 亚洲高清视频免费| 虎白女粉嫩尤物福利视频| 在线观看免费视频高清游戏推荐| 日韩一级特黄毛片| 免费cad大片在线观看| 在线免费看v片| 波多野结衣免费观看| 日本成人性视频| 人妻激情另类乱人伦人妻| 蜜桃网站在线观看| 91专区在线观看| 九九九在线观看视频| jizzzz日本| 日韩视频一二三| 国产极品尤物在线| 国产理论在线播放| 男人的天堂成人| 久久久久久人妻一区二区三区| 欧美性大战久久久久xxx| 国产一级片黄色| 亚洲第一区第二区第三区| 国内外成人激情免费视频| 国产中文字幕二区| 亚欧激情乱码久久久久久久久| www.偷拍.com| 又粗又黑又大的吊av| 午夜免费福利视频在线观看| 久久最新免费视频| 日韩精品一区二区三区不卡| 中文字幕12页| 男人揉女人奶房视频60分| 国产一区二区在线免费播放| 好吊色视频988gao在线观看| 九九九九免费视频| 超碰成人在线免费观看| 久久精品.com| 久久人妻无码一区二区| 99热自拍偷拍| 日韩av加勒比| 天天摸天天碰天天添| 成年人三级视频| 午夜免费福利在线| 97国产精东麻豆人妻电影| 97超碰人人看| 久久国产乱子伦免费精品| 欧美人与动牲交xxxxbbbb| 69久久久久久| 国产中文字幕免费观看| 免费一级淫片aaa片毛片a级| 国产裸体免费无遮挡| av在线观看地址| 亚洲免费av网| 中文字幕22页| 天天操天天爱天天爽| 中文字幕无码精品亚洲35| 四虎4hu永久免费入口| www.五月天色| 极品粉嫩美女露脸啪啪| 91激情视频在线| 欧美两根一起进3p做受视频| 一区二区传媒有限公司| 激情五月婷婷六月| 欧美乱做爰xxxⅹ久久久| 一级黄色免费在线观看| 久久出品必属精品| 国产高清免费在线| 五月天综合婷婷| 欧美精品 - 色网| www.com黄色片| 五月天婷婷激情视频| 国产精品免费成人| 一女被多男玩喷潮视频| 国产 欧美 日韩 一区| 少妇高潮毛片色欲ava片| 9191国产视频| 国产一级爱c视频| 加勒比成人在线| 亚洲欧洲日产国码无码久久99| 欧美成人免费在线观看视频| 成人免费在线小视频| 欧美视频第三页| 大香煮伊手机一区| 最新天堂中文在线| 影音先锋成人资源网站| 久久99久久99精品| 无码人妻丰满熟妇区毛片18| 国产精品久久久毛片| 一级一片免费播放| 成人性做爰片免费视频| 缅甸午夜性猛交xxxx| 久久久久久香蕉| 一本之道在线视频| 中文字幕色呦呦| 久久精品99国产| 国产性生活一级片| 男的插女的下面视频| 日韩一级理论片| 91视频成人免费| 日本在线观看免费视频| 亚欧精品在线视频| 无码aⅴ精品一区二区三区浪潮| 爱情岛论坛亚洲首页入口章节| 永久av免费在线观看| 91丨porny丨探花| 亚洲精品视频三区| 少妇无码av无码专区在线观看| 午夜激情av在线| 欧美亚洲另类色图| 日本a级片在线播放| 欧美伦理视频在线观看| 日韩视频 中文字幕| 中文字幕天天干| 成人综合视频在线| 国产又粗又大又爽的视频| 国产综合免费视频| 国内少妇毛片视频| 日本美女视频一区| www黄色av| 黄色大片中文字幕| 99精品一级欧美片免费播放| 国语对白做受xxxxx在线中国| 国产av不卡一区二区| 亚洲不卡视频在线| 黄色片在线免费| 免费在线激情视频| 国产精品一区二区免费在线观看| 色呦呦网站入口| 99精品视频网站| 中文字幕一区久久| 午夜视频在线网站| 欧美视频亚洲图片| 国产又黄又猛的视频| 久久撸在线视频| 超碰在线97免费| 国产又大又黄又猛| 国产视频1区2区3区| 狠狠操精品视频| 久久综合久久色| 日本va中文字幕| 婷婷免费在线观看| 红桃视频 国产| 午夜影院免费版| 国产成人三级视频| avav在线播放| 国产人妻777人伦精品hd| 俄罗斯av网站| 天天碰免费视频| 午夜两性免费视频| www.色就是色.com| 国产又爽又黄ai换脸| 青青草视频在线视频| 日韩视频在线视频| 免费在线a视频| 天堂在线中文在线| 奇米777四色影视在线看| 国产精品裸体瑜伽视频| 日韩欧美xxxx| 最新黄色av网站| 免费av手机在线观看| 中国丰满人妻videoshd| 国产真人无码作爱视频免费| 亚洲视频一二三四| 中文字幕第50页| 精品国产成人av在线免| 在线看免费毛片| 欧美精品卡一卡二| 三级在线免费看|